Graduation-Project/federated_learning/yolov8_fed.py

202 lines
7.4 KiB
Python
Raw Normal View History

2025-04-20 07:20:16 +00:00
import glob
import os
from pathlib import Path
import json
2025-04-20 07:20:16 +00:00
import yaml
from ultralytics import YOLO
import copy
import torch
# ------------ 新增联邦学习工具函数 ------------
def federated_avg(global_model, client_weights):
"""联邦平均核心算法"""
# 计算总样本数
total_samples = sum(n for _, n in client_weights)
if total_samples == 0:
raise ValueError("Total number of samples must be positive.")
2025-04-20 07:20:16 +00:00
# 获取YOLO底层PyTorch模型参数
global_dict = global_model.model.state_dict()
# 提取所有客户端的 state_dict 和对应样本数
state_dicts, sample_counts = zip(*client_weights)
2025-04-20 07:20:16 +00:00
for key in global_dict:
# 对每一层参数取平均
# if global_dict[key].data.dtype == torch.float32:
# global_dict[key].data = torch.stack(
# [w[key].float() for w in client_weights], 0
# ).mean(0)
2025-04-20 07:20:16 +00:00
# 加权平均
if global_dict[key].dtype == torch.float32: # 只聚合浮点型参数
# 跳过 BatchNorm 层的统计量
if any(
x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
):
2025-04-20 07:20:16 +00:00
continue
# 按照样本数加权求和
weighted_tensors = [
sd[key].float() * (n / total_samples)
for sd, n in zip(state_dicts, sample_counts)
]
2025-04-20 07:20:16 +00:00
global_dict[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
# 解决模型参数不匹配问题
# try:
# # 加载回YOLO模型
# global_model.model.load_state_dict(global_dict)
# except RuntimeError as e:
# print('Ignoring "' + str(e) + '"')
2025-04-20 07:20:16 +00:00
# 加载回YOLO模型
global_model.model.load_state_dict(global_dict)
2025-04-20 07:20:16 +00:00
# 随机选取一个非统计量层进行对比
# sample_key = next(k for k in global_dict if 'running_' not in k)
# aggregated_mean = global_dict[sample_key].mean().item()
# client_means = [sd[sample_key].float().mean().item() for sd in state_dicts]
# print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}")
# print(f"The average value of the layer for each client: {client_means}")
# 定义多个关键层
MONITOR_KEYS = [
"model.0.conv.weight", # 输入层卷积
"model.10.conv.weight", # 中间层卷积
"model.22.dfl.conv.weight", # 输出层分类头
]
with open("aggregation_check.txt", "a") as f:
f.write("\n=== 参数聚合检查 ===\n")
for key in MONITOR_KEYS:
if key not in global_dict:
continue
# 计算聚合后均值
aggregated_mean = global_dict[key].mean().item()
# 计算各客户端均值
client_means = [sd[key].float().mean().item() for sd in state_dicts]
with open("aggregation_check.txt", "a") as f:
f.write(f"'{key}' 聚合后均值: {aggregated_mean:.6f}\n")
f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n")
f.write(f"客户端最大差异: {max(client_means) - min(client_means):.6f}\n\n")
2025-04-20 07:20:16 +00:00
return global_model
# ------------ 修改训练流程 ------------
def federated_train(num_rounds, clients_data):
# ========== 新增:初始化指标记录 ==========
metrics = {
"round": [],
"val_mAP": [], # 每轮验证集mAP
"train_loss": [], # 每轮平均训练损失
"client_mAPs": [], # 各客户端本地模型在验证集上的mAP
"communication_cost": [], # 每轮通信开销MB
}
2025-04-20 07:20:16 +00:00
# 初始化全局模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global_model = YOLO("../yolov8n.yaml").to(device)
2025-04-20 07:20:16 +00:00
# 设置类别数
# global_model.model.nc = 1
2025-04-20 07:20:16 +00:00
for _ in range(num_rounds):
client_weights = []
client_losses = [] # 记录各客户端的训练损失
2025-04-20 07:20:16 +00:00
# 每个客户端本地训练
for data_path in clients_data:
# 统计本地训练样本数
with open(data_path, "r") as f:
2025-04-20 07:20:16 +00:00
config = yaml.safe_load(f)
# Resolve img_dir relative to the YAML file's location
yaml_dir = os.path.dirname(data_path)
img_dir = os.path.join(
yaml_dir, config.get("train", data_path)
) # 从配置文件中获取图像目录
2025-04-22 06:56:45 +00:00
# print(f"Image directory: {img_dir}")
num_samples = (len(glob.glob(os.path.join(img_dir, "*.jpg")))
+ len(glob.glob(os.path.join(img_dir, "*.png")))
+ len(glob.glob(os.path.join(img_dir, "*.jpeg")))
)
2025-04-22 06:56:45 +00:00
# print(f"Number of images: {num_samples}")
2025-04-20 07:20:16 +00:00
# 克隆全局模型
local_model = copy.deepcopy(global_model)
2025-04-20 07:20:16 +00:00
# 本地训练(保持你的原有参数设置)
results = local_model.train(
2025-04-20 07:20:16 +00:00
data=data_path,
epochs=4, # 每轮本地训练多少个epoch
# save_period=16,
2025-04-21 15:50:41 +00:00
imgsz=640, # 图像大小
2025-04-22 06:56:45 +00:00
verbose=False, # 关闭冗余输出
batch=-1,
2025-04-20 07:20:16 +00:00
)
# 记录客户端训练损失
# client_loss = results.results_dict['train_loss']
# client_losses.append(client_loss)
2025-04-20 07:20:16 +00:00
# 收集模型参数及样本数
client_weights.append(
(copy.deepcopy(local_model.model.state_dict()), num_samples)
)
2025-04-20 07:20:16 +00:00
# 聚合参数更新全局模型
global_model = federated_avg(global_model, client_weights)
# ========== 评估全局模型 ==========
# 评估全局模型在验证集上的性能
val_results = global_model.val(
data="/mnt/DATA/UAVdataset/data.yaml", # 指定验证集配置文件
imgsz=640,
batch=-1,
verbose=False,
)
val_mAP = val_results.box.map # 获取mAP@0.5
# 计算平均训练损失
# avg_train_loss = sum(client_losses) / len(client_losses)
# 计算通信开销(假设传输全部模型参数)
model_size = sum(p.numel() * 4 for p in global_model.model.parameters()) / (
1024**2
) # MB
# 记录到指标容器
metrics["round"].append(_ + 1)
metrics["val_mAP"].append(val_mAP)
# metrics['train_loss'].append(avg_train_loss)
metrics["communication_cost"].append(model_size)
# 打印当前轮次结果
with open("aggregation_check.txt", "a") as f:
f.write(f"\n[Round {_ + 1}/{num_rounds}]")
f.write(f"Validation mAP@0.5: {val_mAP:.4f}")
# f.write(f"Average Train Loss: {avg_train_loss:.4f}")
f.write(f"Communication Cost: {model_size:.2f} MB\n")
return global_model, metrics
2025-04-20 07:20:16 +00:00
# ------------ 使用示例 ------------
if __name__ == "__main__":
# 联邦训练配置
clients_config = [
"/mnt/DATA/uav_dataset_fed/train1/train1.yaml", # 客户端1数据路径
"/mnt/DATA/uav_dataset_fed/train2/train2.yaml", # 客户端2数据路径
2025-04-20 07:20:16 +00:00
]
2025-04-20 07:20:16 +00:00
# 运行联邦训练
final_model, metrics = federated_train(num_rounds=40, clients_data=clients_config)
2025-04-20 07:20:16 +00:00
# 保存最终模型
2025-04-22 06:56:45 +00:00
final_model.save("yolov8n_federated.pt")
2025-04-20 07:20:16 +00:00
# final_model.export(format="onnx") # 导出为ONNX格式
with open("metrics.json", "w") as f:
json.dump(metrics, f, indent=4)