diff --git a/federated_learning/__init__.py b/federated_learning/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/federated_learning/res18Train.py b/federated_learning/res18Train.py new file mode 100644 index 0000000..8754446 --- /dev/null +++ b/federated_learning/res18Train.py @@ -0,0 +1,155 @@ +import argparse +import torch +import os +from torch import optim +from torch.optim import lr_scheduler +from util.data_utils import get_data +from util.model_utils import get_model +from util.train_utils import train_model, validate_model, update_model_weights, v3_update_model_weights + + +def main(args): + device = torch.device(args.device) + + # 数据加载器 + loader1, loader2, loader3, subset_len, val_loader = get_data( + args.train_path, args.val_path, args.batch_size, args.number_workers + ) + + # 模型 get_model(name='ResNet', number_class=2, device=device, resnet_type='resnet18') + model_a = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) + model_b = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) + model_c = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) + # 添加全局模型 + global_model = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) + + if args.resume_training: + model_a.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_a.pth'))) + model_b.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_b.pth'))) + model_c.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_c.pth'))) + print("已加载之前保存的模型参数继续训练") + + # 优化器和损失函数 + criterion = torch.nn.BCEWithLogitsLoss().to(device) + + optimizer_a = optim.Adam(model_a.parameters(), lr=args.lr, weight_decay=5e-4) + optimizer_b = optim.Adam(model_b.parameters(), lr=args.lr, weight_decay=5e-4) + optimizer_c = optim.Adam(model_c.parameters(), lr=args.lr, weight_decay=5e-4) + scheduler_a = lr_scheduler.ReduceLROnPlateau(optimizer_a, mode='min', factor=0.5, patience=2, verbose=True) + scheduler_b = lr_scheduler.ReduceLROnPlateau(optimizer_b, mode='min', factor=0.5, patience=2, verbose=True) + scheduler_c = lr_scheduler.ReduceLROnPlateau(optimizer_c, mode='min', factor=0.5, patience=2, verbose=True) + + # 初始化最优验证损失和模型路径 + best_val_loss_a = float('inf') + best_val_loss_b = float('inf') + best_val_loss_c = float('inf') + + save_dir = args.save_dir + os.makedirs(save_dir, exist_ok=True) + + # 训练与验证 + for epoch in range(args.epochs): + print(f'Epoch {epoch + 1}/{args.epochs}') + + # 训练模型 + loss_a = train_model(device, model_a, loader1, optimizer_a, criterion, epoch, 'model_a') + loss_b = train_model(device, model_b, loader2, optimizer_b, criterion, epoch, 'model_b') + loss_c = train_model(device, model_c, loader3, optimizer_c, criterion, epoch, 'model_c') + + # 验证模型 + val_loss_a, val_acc_a, val_auc_a = validate_model(device, model_a, val_loader, criterion, epoch, 'model_a') + val_loss_b, val_acc_b, val_auc_b = validate_model(device, model_b, val_loader, criterion, epoch, 'model_b') + val_loss_c, val_acc_c, val_auc_c = validate_model(device, model_c, val_loader, criterion, epoch, 'model_c') + + if args.save_model and val_loss_a < best_val_loss_a: + best_val_loss_a = val_loss_a + torch.save(model_a.state_dict(), os.path.join(save_dir, 'best_model_a.pth')) + print(f"Best model_a saved with val_loss: {best_val_loss_a:.4f}") + + if args.save_model and val_loss_b < best_val_loss_b: + best_val_loss_b = val_loss_b + torch.save(model_b.state_dict(), os.path.join(save_dir, 'best_model_b.pth')) + print(f"Best model_b saved with val_loss: {best_val_loss_b:.4f}") + + if args.save_model and val_loss_c < best_val_loss_c: + best_val_loss_c = val_loss_c + torch.save(model_c.state_dict(), os.path.join(save_dir, 'best_model_c.pth')) + print(f"Best model_c saved with val_loss: {best_val_loss_c:.4f}") + + print( + f'Model A - Loss: {loss_a:.4f}, Val Loss: {val_loss_a:.4f}, Val Acc: {val_acc_a:.4f}, AUC: {val_auc_a:.4f}') + print( + f'Model B - Loss: {loss_b:.4f}, Val Loss: {val_loss_b:.4f}, Val Acc: {val_acc_b:.4f}, AUC: {val_auc_b:.4f}') + print( + f'Model C - Loss: {loss_c:.4f}, Val Loss: {val_loss_c:.4f}, Val Acc: {val_acc_c:.4f}, AUC: {val_auc_c:.4f}') + + # 更新模型 A 的权重,每 3 轮 1 + val_acc_a, val_auc_a, val_acc_a_threshold = v3_update_model_weights( + epoch=epoch, + model_to_update=model_a, + other_models=[model_a, model_b, model_c], + global_model=global_model, + losses=[loss_a, loss_b, loss_c], + val_loader=val_loader, + device=device, + val_auc_threshold=val_auc_a, + validate_model=validate_model, + criterion=criterion, + update_frequency=1 + ) + + # 更新模型 B 的权重,每 5 轮1 + val_acc_b, val_auc_b, val_acc_b_threshold = v3_update_model_weights( + epoch=epoch, + model_to_update=model_b, + other_models=[model_a, model_b, model_c], + global_model=global_model, + losses=[loss_a, loss_b, loss_c], + val_loader=val_loader, + device=device, + val_auc_threshold=val_auc_b, + validate_model=validate_model, + criterion=criterion, + update_frequency=1 + ) + + # 更新模型 C 的权重,每 2 轮 1 + val_acc_c, val_auc_c, val_acc_c_threshold = v3_update_model_weights( + epoch=epoch, + model_to_update=model_c, + other_models=[model_a, model_b, model_c], + global_model=global_model, + losses=[loss_a, loss_b, loss_c], + val_loader=val_loader, + device=device, + val_auc_threshold=val_auc_c, + validate_model=validate_model, + criterion=criterion, + update_frequency=1 + ) + + print("Training complete! Best models saved.") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--model_name', type=str, default='resnet18_psa', help='Model name') + parser.add_argument('--deep_backbone', type=str, default='*', help='deeplab backbone') + parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/train') + parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/val') + # parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/train') + # parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/val') + parser.add_argument('--epochs', type=int, default=10) + parser.add_argument('--batch_size', type=int, default=16) + parser.add_argument('--number_workers', type=int, default=8) + parser.add_argument('--number_class', type=int, default=1) + parser.add_argument('--device', type=str, default='cuda:0') + parser.add_argument('--lr', type=float, default=0.00005) + parser.add_argument('--save_dir', type=str, + default='/media/terminator/实验&代码/yhs/output/work2/resnet18_psa/c40/total/e10', + help='Directory to save best models') + parser.add_argument('--save_model', type=bool, default=True, help='是否保存最优模型') + parser.add_argument('--resume_training', type=bool, default=False, help='是否从保存的模型参数继续训练') + args = parser.parse_args() + + main(args) diff --git a/federated_learning/utils/__init__.py b/federated_learning/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/federated_learning/utils/data_utils.py b/federated_learning/utils/data_utils.py new file mode 100644 index 0000000..6d900db --- /dev/null +++ b/federated_learning/utils/data_utils.py @@ -0,0 +1,217 @@ +import os +from PIL import Image +import torch +from torchvision import transforms +from torch.utils.data import DataLoader, Dataset, random_split +from collections import Counter +from torch.utils.data import DataLoader, Subset +from torchvision import transforms, datasets +import os +from sklearn.model_selection import train_test_split + + +class CustomImageDataset(Dataset): + def __init__(self, root_dir, transform=None): + self.root_dir = root_dir + self.transform = transform + self.image_paths = [] + self.labels = [] + + # 遍历 root_dir 下的子文件夹 0 和 1 + for label in [0, 1]: + folder_path = os.path.join(root_dir, str(label)) + if os.path.isdir(folder_path): + for img_name in os.listdir(folder_path): + img_path = os.path.join(folder_path, img_name) + self.image_paths.append(img_path) + self.labels.append(label) + + # 打印用于调试的图像路径和标签 + # print("Loaded image paths and labels:") + # for path, label in zip(self.image_paths[:5], self.labels[:5]): + # print(f"Path: {path}, Label: {label}") + # print(f"Total samples: {len(self.image_paths)}\n") + + def __len__(self): + return len(self.image_paths) + + def __getitem__(self, idx): + img_path = self.image_paths[idx] + label = self.labels[idx] + image = Image.open(img_path).convert("RGB") + + if self.transform: + image = self.transform(image) + + return image, label + + +def get_test_data(test_image_path, batch_size, nw): + data_transform = transforms.Compose([ + transforms.Resize((256, 256)), + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]) + + # test_dataset = datasets.ImageFolder(root=test_image_path, transform=data_transform) + + test_dataset = CustomImageDataset(root_dir=test_image_path, transform=data_transform) + test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=nw) + return test_loader + + +def get_Onedata(train_image_path, val_image_path, batch_size, num_workers): + """ + 加载完整的训练数据集和验证数据集。 + """ + data_transform = { + "train": transforms.Compose([ + transforms.Resize((256, 256)), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]), + "val": transforms.Compose([ + transforms.Resize((256, 256)), + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]), + } + + # 创建训练和验证数据集 + train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"]) + val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"]) + + # 创建数据加载器 + train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) + val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) + + return train_loader, val_loader + + +def get_data(train_image_path, val_image_path, batch_size, num_workers): + data_transform = { + "train": transforms.Compose([ + transforms.Resize((256, 256)), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]), + "val": transforms.Compose([ + transforms.Resize((256, 256)), + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]), + "test": transforms.Compose([ + transforms.Resize((256, 256)), + transforms.ToTensor(), + transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) + ]), + } + + train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"]) + val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"]) + + # 切分数据集为三个等分 + train_len = (len(train_dataset) // 3) * 3 + train_dataset_truncated = torch.utils.data.Subset(train_dataset, range(train_len)) + subset_len = train_len // 3 + dataset1, dataset2, dataset3 = random_split(train_dataset_truncated, [subset_len] * 3) + + loader1 = DataLoader(dataset1, batch_size=batch_size, shuffle=True, num_workers=num_workers) + loader2 = DataLoader(dataset2, batch_size=batch_size, shuffle=True, num_workers=num_workers) + loader3 = DataLoader(dataset3, batch_size=batch_size, shuffle=True, num_workers=num_workers) + val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) + + return loader1, loader2, loader3, subset_len, val_loader + + +def get_Fourdata(train_path, val_path, batch_size, num_workers): + """ + 加载训练集和验证集。 + 包括 4 个客户端验证集(df、f2f、fs、nt)和 1 个全局验证集。 + + Args: + train_path (str): 训练数据路径 + val_path (str): 验证数据路径 + batch_size (int): 批量大小 + num_workers (int): DataLoader 的工作线程数 + + Returns: + tuple: 包含 4 个客户端训练和验证加载器,以及全局验证加载器 + """ + # 数据预处理 + train_transform = transforms.Compose([ + transforms.Resize((256, 256)), + transforms.RandomHorizontalFlip(), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + ]) + + val_transform = transforms.Compose([ + transforms.Resize((256, 256)), + transforms.ToTensor(), + transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) + ]) + + # 定义 4 个客户端数据集路径 + client_names = ['df', 'f2f', 'fs', 'nt'] + client_train_loaders = [] + client_val_loaders = [] + + for client in client_names: + client_train_path = os.path.join(train_path, client) + client_val_path = os.path.join(val_path, client) + + # 加载客户端训练数据 + train_dataset = datasets.ImageFolder(root=client_train_path, transform=train_transform) + train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) + + # 加载客户端验证数据 + val_dataset = datasets.ImageFolder(root=client_val_path, transform=val_transform) + val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) + + client_train_loaders.append(train_loader) + client_val_loaders.append(val_loader) + + # 全局验证集 + global_val_dataset = datasets.ImageFolder(root=val_path, transform=val_transform) + global_val_loader = DataLoader(global_val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) + + return (*client_train_loaders, *client_val_loaders, global_val_loader) + + +def main(): + # 设置参数 + train_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/train" + val_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/val" + batch_size = 4 + num_workers = 2 + + # 获取数据加载器 + loader1, loader2, loader3, subset_len, val_loader = get_data(train_image_path, val_image_path, batch_size, + num_workers) + + # 统计标签数量和类型 + train_labels = [] + for dataset in [loader1, loader2, loader3]: + for _, labels in dataset: + train_labels.extend(labels.tolist()) + + val_labels = [] + for _, labels in val_loader: + val_labels.extend(labels.tolist()) + + # 使用 Counter 统计标签数量 + train_label_counts = Counter(train_labels) + val_label_counts = Counter(val_labels) + + # 打印统计结果 + print("Training Dataset - Label Counts:", train_label_counts) + print("Validation Dataset - Label Counts:", val_label_counts) + print("Label Types in Training:", set(train_labels)) + print("Label Types in Validation:", set(val_labels)) + + +if __name__ == "__main__": + main() diff --git a/federated_learning/utils/model_utils.py b/federated_learning/utils/model_utils.py new file mode 100644 index 0000000..9749aec --- /dev/null +++ b/federated_learning/utils/model_utils.py @@ -0,0 +1,57 @@ +import torch +from torch import nn +from torchvision import models + +from Deeplab.deeplab import DeepLab_F +from Deeplab.resnet_psa import BasicBlockWithPSA +from Deeplab.resnet_psa_v2 import ResNet +from model_base.efNet_base_model import DeepLab +from model_base.efficientnet import EfficientNet +from model_base.resnet_more import CustomResNet +from model_base.xcption import Xception + + +def get_model(name, number_class, device, backbone): + """ + 根据指定的模型名称加载模型,并根据任务类别数调整最后的分类层。 + + Args: + name (str): 模型名称 ('Vgg', 'ResNet', 'EfficientNet', 'Xception')。 + number_class (int): 分类类别数。 + device (torch.device): 设备 ('cuda' or 'cpu')。 + resnet_type (str): ResNet类型 ('resnet18', 'resnet34', 'resnet50', 'resnet101', etc.)。 + + Returns: + nn.Module: 经过修改的模型。 + """ + if name == 'Vgg': + model = models.vgg16_bn(pretrained=True).to(device) + model.classifier[6] = nn.Linear(model.classifier[6].in_features, number_class) + elif name == 'ResNet18': + model = CustomResNet(resnet_type='resnet18', num_classes=number_class, pretrained=True).to(device) + elif name == 'ResNet34': + model = CustomResNet(resnet_type='resnet34', num_classes=number_class, pretrained=True).to(device) + elif name == 'ResNet50': + model = CustomResNet(resnet_type='resnet50', num_classes=number_class, pretrained=True).to(device) + elif name == 'ResNet101': + model = CustomResNet(resnet_type='resnet101', num_classes=number_class, pretrained=True).to(device) + elif name == 'ResNet152': + model = CustomResNet(resnet_type='resnet152', num_classes=number_class, pretrained=True).to(device) + elif name == 'EfficientNet': + # 使用自定义的 DeepLab 类加载 EfficientNet + model = DeepLab(backbone='efficientnet', num_classes=number_class).to(device) + elif name == 'Xception': + model = Xception( + in_planes=3, + num_classes=number_class, + pretrained=True, + pretrained_path="/home/terminator/1325/yhs/fedLeaning/pre_model/xception-43020ad28.pth" + ).to(device) + elif name == 'DeepLab': + # 使用自定义的 DeepLab 类加载 EfficientNet + model = DeepLab_F(num_classes=1, backbone=backbone).to(device) + elif name == 'resnet18_psa': + model = ResNet(BasicBlockWithPSA, [2, 2, 2, 2], number_class) + else: + raise ValueError(f"Model {name} is not supported.") + return model diff --git a/federated_learning/utils/train_utils.py b/federated_learning/utils/train_utils.py new file mode 100644 index 0000000..988d220 --- /dev/null +++ b/federated_learning/utils/train_utils.py @@ -0,0 +1,368 @@ +import numpy as np +import torch +from tqdm import tqdm +from sklearn.metrics import roc_auc_score, accuracy_score +import copy +import torch.nn.functional as F +import random + + +def train_deepmodel(device, model, loader, optimizer, criterion, epoch, model_name): + model.train() + running_loss = 0.0 + corrects = 0.0 + alpha = 1 + beta = 0.1 + for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'): + inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 + optimizer.zero_grad() + + outputs, re_img = model(inputs) + loss = criterion(outputs.squeeze(), labels.float()) + loss_F1 = F.l1_loss(re_img, inputs) + loss = alpha * loss + beta * loss_F1 + loss.backward() + optimizer.step() + + running_loss += loss.item() + + avg_loss = running_loss / len(loader) + print(f'{model_name} Training Loss: {avg_loss:.4f}') + return avg_loss + + +def validate_deepmodel(device, model, loader, criterion, epoch, model_name): + model.eval() + running_loss = 0.0 + correct, total = 0, 0 + all_labels, all_preds = [], [] + val_corrects = 0.0 + alpha = 1 + beta = 0.1 + + with torch.no_grad(): + for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'): + inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 + + outputs, re_img = model(inputs) + + # 将 logits 转换为预测 + predicted = torch.sigmoid(outputs).data + all_preds.extend(predicted.cpu().numpy()) + all_labels.extend(labels.cpu().numpy()) + + # loss = criterion(outputs.squeeze(), labels.float()) + loss = criterion(outputs.squeeze(), labels.float()) + loss_F1 = F.l1_loss(re_img, inputs) + loss = alpha * loss + beta * loss_F1 + running_loss += loss.item() + + auc = roc_auc_score(all_labels, all_preds) + predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组 + acc = accuracy_score(all_labels, predicted_labels) + avg_loss = running_loss / len(loader) + print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}') + return avg_loss, acc, auc + + +def test_deepmodel(device, model, loader): + model.eval() + all_labels, all_preds = [], [] + + with torch.no_grad(): + for inputs, labels in tqdm(loader, desc=f'Testing', unit='batch'): + inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 + outputs, re_img = model(inputs) + predicted = torch.sigmoid(outputs).data # 将 logits 转换为预测 + + # 收集预测值和真实标签 + all_preds.extend(predicted.cpu().numpy()) + all_labels.extend(labels.cpu().numpy()) + + # 将预测值转换为二值标签 + predicted_labels = (np.array(all_preds) >= 0.5).astype(int) + + # 计算准确率和AUC + acc = accuracy_score(all_labels, predicted_labels) + auc = roc_auc_score(all_labels, all_preds) + + print(f'Test Accuracy: {acc:.4f}, Test AUC: {auc:.4f}') + return acc, auc + + +# def train_model(device, model, loader, optimizer, criterion, epoch, model_name): +# model.train() +# running_loss = 0.0 +# for i, (inputs, labels) in enumerate(tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch')): +# inputs, labels = inputs.float().to(device), labels.float().to(device) # 确保数据格式正确 +# optimizer.zero_grad() +# +# outputs = model(inputs) +# loss = criterion(outputs.squeeze(), labels) +# +# # 随机打印部分输出和标签,检查格式 +# if i % 10 == 0: # 每100个批次打印一次 +# print(f"Batch {i} - Sample Output: {outputs[0].item():.4f}, Sample Label: {labels[0].item()}") +# +# # 检查损失值是否异常 +# if loss.item() < 0: +# print(f"Warning: Negative loss detected at batch {i}. Loss: {loss.item()}") +# +# loss.backward() +# optimizer.step() +# +# running_loss += loss.item() +# +# avg_loss = running_loss / len(loader) +# print(f'{model_name} Training Loss: {avg_loss:.4f}') +# return avg_loss +def train_model(device, model, loader, optimizer, criterion, epoch, model_name): + model.train() + running_loss = 0.0 + for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'): + inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 + optimizer.zero_grad() + + outputs = model(inputs) + loss = criterion(outputs.squeeze(), labels.float()) + loss.backward() + optimizer.step() + + running_loss += loss.item() + + avg_loss = running_loss / len(loader) + print(f'{model_name} Training Loss: {avg_loss:.4f}') + return avg_loss + + +def validate_model(device, model, loader, criterion, epoch, model_name): + model.eval() + running_loss = 0.0 + correct, total = 0, 0 + all_labels, all_preds = [], [] + + with torch.no_grad(): + for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'): + inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 + + outputs = model(inputs) + + # 将 logits 转换为预测 + predicted = torch.sigmoid(outputs).data + all_preds.extend(predicted.cpu().numpy()) + all_labels.extend(labels.cpu().numpy()) + + # loss = criterion(outputs.squeeze(), labels.float()) + loss = criterion(outputs.squeeze(), labels.float()) + running_loss += loss.item() + auc = roc_auc_score(all_labels, all_preds) + predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组 + acc = accuracy_score(all_labels, predicted_labels) + avg_loss = running_loss / len(loader) + print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}') + return avg_loss, acc, auc + + +# 权重聚合函数 +def aggregate_weights(weights_list, alpha=1 / 3, beta=1 / 3, gamma=1 / 3): + new_state_dict = copy.deepcopy(weights_list[0]) # 从模型a复制权重结构 + for key in new_state_dict.keys(): + new_state_dict[key] = (alpha * weights_list[0][key] + + beta * weights_list[1][key] + + gamma * weights_list[2][key]) + return new_state_dict + + +def v3_update_model_weights( + epoch, + model_to_update, + other_models, + global_model, + losses, + val_loader, + device, + val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值 + validate_model, + criterion, + update_frequency +): + """ + 根据给定的条件更新模型的权重。 + + 参数: + epoch (int): 当前训练轮次。 + model_to_update: 需要更新的模型。 + other_models (list): 其他模型列表,用于计算全局模型权重。 + global_model: 全局模型。 + losses (list): 各模型的损失值列表。 + val_loader: 验证数据的 DataLoader。 + device: 设备 ('cuda' 或 'cpu')。 + val_auc_threshold (float): 当前需要更新模型的验证 AUC。 + aggregate_weights (function): 权重聚合函数。 + validate_model (function): 验证模型的函数。 + update_frequency (int): 权重更新的频率。 + + 返回: + val_acc (float): 全局模型的验证精度。 + val_auc (float): 全局模型的验证 AUC。 + updated_val_auc_threshold (float): 更新后的验证 AUC。 + """ + if (epoch + 1) % update_frequency == 0: + # 获取所有模型的权重 + all_weights = [model.state_dict() for model in other_models] + avg_weights = aggregate_weights(all_weights) # 聚合权重 + + # 更新全局模型权重 + global_model.load_state_dict(avg_weights) + + # 计算加权平均损失 + weighted_loss = sum(loss * 0.33 for loss in losses) + print(f"Weighted Average Loss: {weighted_loss:.4f}") + + # 验证全局模型 + val_loss, val_acc, val_auc = validate_model(device, global_model, val_loader, criterion, epoch, 'global_model') + print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}') + + # 如果全局模型的 AUC 更高,则更新目标模型 + if val_auc > val_auc_threshold: + print(f'Updating model at epoch {epoch + 1}') + model_to_update.load_state_dict(global_model.state_dict()) + val_auc_threshold = val_auc # 更新 AUC 阈值 + + return val_acc, val_auc, val_auc_threshold + return None, None, val_auc_threshold + + +def update_model_weights( + epoch, + model_to_update, + other_models, + global_model, + losses, + val_loader, + device, + val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值 + validate_model, + criterion, + update_frequency +): + """ + 根据给定的条件更新模型的权重。 + + 参数: + epoch (int): 当前训练轮次。 + model_to_update: 需要更新的模型。 + other_models (list): 其他模型列表,用于计算全局模型权重。 + global_model: 全局模型。 + losses (list): 各模型的损失值列表。 + val_loader: 验证数据的 DataLoader。 + device: 设备 ('cuda' 或 'cpu')。 + val_auc_threshold (float): 当前需要更新模型的验证 AUC。 + aggregate_weights (function): 权重聚合函数。 + validate_model (function): 验证模型的函数。 + update_frequency (int): 权重更新的频率。 + + 返回: + val_acc (float): 全局模型的验证精度。 + val_auc (float): 全局模型的验证 AUC。 + updated_val_auc_threshold (float): 更新后的验证 AUC。 + """ + if (epoch + 1) % update_frequency == 0: + # 获取所有模型的权重 + all_weights = [model.state_dict() for model in other_models] + avg_weights = aggregate_weights(all_weights) # 聚合权重 + + # 更新全局模型权重 + global_model.load_state_dict(avg_weights) + + # 计算加权平均损失 + weighted_loss = sum(loss * 0.33 for loss in losses) + print(f"Weighted Average Loss: {weighted_loss:.4f}") + + # 验证全局模型 + val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch, + 'global_model') + print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}') + + # 如果全局模型的 AUC 更高,则更新目标模型 + if val_auc > val_auc_threshold: + print(f'Updating model at epoch {epoch + 1}') + model_to_update.load_state_dict(global_model.state_dict()) + val_auc_threshold = val_auc # 更新 AUC 阈值 + + return val_acc, val_auc, val_auc_threshold + return None, None, val_auc_threshold + + +def f_update_model_weights( + epoch, + model_to_update, + other_models, + global_model, + losses, + val_loader, + device, + val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值 + aggregate_weights, # 权重聚合函数 + validate_model, + criterion, + update_frequency +): + """ + 根据给定的条件更新模型的权重。 + + 参数: + epoch (int): 当前训练轮次。 + model_to_update: 需要更新的模型。 + other_models (list): 其他模型列表,用于计算全局模型权重。 + global_model: 全局模型。 + losses (list): 各模型的损失值列表。 + val_loader: 验证数据的 DataLoader。 + device: 设备 ('cuda' 或 'cpu')。 + val_auc_threshold (float): 当前需要更新模型的验证 AUC 阈值。 + aggregate_weights (function): 权重聚合函数。 + validate_model (function): 验证模型的函数。 + criterion: 损失函数。 + update_frequency (int): 权重更新的频率。 + + 返回: + val_acc (float): 全局模型的验证精度。 + val_auc (float): 全局模型的验证 AUC。 + updated_val_auc_threshold (float): 更新后的验证 AUC 阈值。 + """ + # 每隔指定的 epoch 更新一次模型权重 + if (epoch + 1) % update_frequency == 0: + print(f"\n[Epoch {epoch + 1}] Updating global model weights...") + + # 获取其他模型的权重 + all_weights = [model.state_dict() for model in other_models] + + # 使用聚合函数计算全局权重 + avg_weights = aggregate_weights(all_weights) + print("Global model weights aggregated.") + + # 更新全局模型权重 + global_model.load_state_dict(avg_weights) + + # 计算加权平均损失 + weighted_loss = sum(loss * (1 / len(losses)) for loss in losses) # 平均加权 + print(f"Weighted Average Loss: {weighted_loss:.4f}") + + # 验证全局模型性能 + val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch, + 'global_model') + print(f"[Global Model] Validation Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}, AUC: {val_auc:.4f}") + + # 如果全局模型 AUC 高于阈值,则更新目标模型权重 + if val_auc > val_auc_threshold: + print(f"Global model AUC improved ({val_auc:.4f} > {val_auc_threshold:.4f}). Updating target model.") + model_to_update.load_state_dict(global_model.state_dict()) + val_auc_threshold = val_auc # 更新 AUC 阈值 + else: + print( + f"Global model AUC did not improve ({val_auc:.4f} <= {val_auc_threshold:.4f}). No update to target model.") + + return val_acc, val_auc, val_auc_threshold + + # 如果未到达更新频率,返回当前的 AUC 阈值 + return None, None, val_auc_threshold