修改参数,符合Linux路径要求
This commit is contained in:
		| @@ -1,4 +1,4 @@ | ||||
| train: images | ||||
| train: ./images | ||||
| val:   ../val | ||||
| nc:    1 | ||||
| names: ['uav'] | ||||
| @@ -1,4 +1,4 @@ | ||||
| train: images | ||||
| train: ./images | ||||
| val:   ../val | ||||
| nc:    1 | ||||
| names: ['uav'] | ||||
|   | ||||
| @@ -59,8 +59,8 @@ def federated_avg(global_model, client_weights): | ||||
|     sample_key = next(k for k in global_dict if 'running_' not in k) | ||||
|     aggregated_mean = global_dict[sample_key].mean().item() | ||||
|     client_means = [sd[sample_key].float().mean().item() for sd in state_dicts] | ||||
|     print(f"层 '{sample_key}' 聚合后均值: {aggregated_mean:.6f}") | ||||
|     print(f"各客户端该层均值: {client_means}") | ||||
|     print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}") | ||||
|     print(f"The average value of the layer for each client: {client_means}") | ||||
|      | ||||
|     return global_model | ||||
|  | ||||
| @@ -85,10 +85,10 @@ def federated_train(num_rounds, clients_data): | ||||
|             yaml_dir = os.path.dirname(data_path) | ||||
|             img_dir = os.path.join(yaml_dir, config.get('train', data_path))  # 从配置文件中获取图像目录 | ||||
|              | ||||
|             print(f"Image directory: {img_dir}") | ||||
|             # print(f"Image directory: {img_dir}") | ||||
|             num_samples = (len(glob.glob(os.path.join(img_dir, '*.jpg'))) + | ||||
|                            len(glob.glob(os.path.join(img_dir, '*.png')))) | ||||
|             print(f"Number of images: {num_samples}") | ||||
|             # print(f"Number of images: {num_samples}") | ||||
|              | ||||
|             # 克隆全局模型 | ||||
|             local_model = copy.deepcopy(global_model) | ||||
| @@ -96,9 +96,11 @@ def federated_train(num_rounds, clients_data): | ||||
|             # 本地训练(保持你的原有参数设置) | ||||
|             local_model.train( | ||||
|                 data=data_path, | ||||
|                 epochs=1,  # 每轮本地训练1个epoch | ||||
|                 epochs=16,  # 每轮本地训练1个epoch | ||||
|                 save_period=16, | ||||
|                 imgsz=640,  # 图像大小 | ||||
|                 verbose=False  # 关闭冗余输出 | ||||
|                 verbose=False,  # 关闭冗余输出 | ||||
|                 batch=-1 | ||||
|             ) | ||||
|              | ||||
|             # 收集模型参数及样本数 | ||||
| @@ -106,7 +108,7 @@ def federated_train(num_rounds, clients_data): | ||||
|          | ||||
|         # 聚合参数更新全局模型 | ||||
|         global_model = federated_avg(global_model, client_weights) | ||||
|      | ||||
|         print(f"Round {_ + 1}/{num_rounds} completed.") | ||||
|     return global_model | ||||
|  | ||||
|  | ||||
| @@ -114,14 +116,15 @@ def federated_train(num_rounds, clients_data): | ||||
| if __name__ == "__main__": | ||||
|     # 联邦训练配置 | ||||
|     clients_config = [ | ||||
|         "../dataset/train1/train1.yaml",  # 客户端1数据路径 | ||||
|         "../dataset/train2/train2.yaml"  # 客户端2数据路径 | ||||
|         "/root/autodl-tmp/dataset/train1/train1.yaml",  # 客户端1数据路径 | ||||
|         "/root/autodl-tmp/dataset/train2/train2.yaml"  # 客户端2数据路径 | ||||
|     ] | ||||
|      | ||||
|     # 运行联邦训练 | ||||
|     final_model = federated_train(num_rounds=1, clients_data=clients_config) | ||||
|     final_model = federated_train(num_rounds=10, clients_data=clients_config) | ||||
|      | ||||
|     # 保存最终模型 | ||||
|     final_model.save("yolov8n_federated.pt") | ||||
|     # final_model.export(format="onnx")  # 导出为ONNX格式 | ||||
|      | ||||
|     # 检查1:确认模型保存 | ||||
|   | ||||
		Reference in New Issue
	
	Block a user