训练模型配置
This commit is contained in:
		
							
								
								
									
										49
									
								
								federated_learning/yolov8.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										49
									
								
								federated_learning/yolov8.yaml
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,49 @@
 | 
				
			|||||||
 | 
					# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
 | 
				
			||||||
 | 
					# Model docs: https://docs.ultralytics.com/models/yolov8
 | 
				
			||||||
 | 
					# Task docs: https://docs.ultralytics.com/tasks/detect
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Parameters
 | 
				
			||||||
 | 
					nc: 1 # number of classes
 | 
				
			||||||
 | 
					scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
 | 
				
			||||||
 | 
					  # [depth, width, max_channels]
 | 
				
			||||||
 | 
					  n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS
 | 
				
			||||||
 | 
					  s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS
 | 
				
			||||||
 | 
					  m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS
 | 
				
			||||||
 | 
					  l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS
 | 
				
			||||||
 | 
					  x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# YOLOv8.0n backbone
 | 
				
			||||||
 | 
					backbone:
 | 
				
			||||||
 | 
					  # [from, repeats, module, args]
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
 | 
				
			||||||
 | 
					  - [-1, 3, C2f, [128, True]]
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
 | 
				
			||||||
 | 
					  - [-1, 6, C2f, [256, True]]
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
 | 
				
			||||||
 | 
					  - [-1, 6, C2f, [512, True]]
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
 | 
				
			||||||
 | 
					  - [-1, 3, C2f, [1024, True]]
 | 
				
			||||||
 | 
					  - [-1, 1, SPPF, [1024, 5]] # 9
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# YOLOv8.0n head
 | 
				
			||||||
 | 
					head:
 | 
				
			||||||
 | 
					  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
 | 
				
			||||||
 | 
					  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
 | 
				
			||||||
 | 
					  - [-1, 3, C2f, [512]] # 12
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
 | 
				
			||||||
 | 
					  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
 | 
				
			||||||
 | 
					  - [-1, 3, C2f, [256]] # 15 (P3/8-small)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [256, 3, 2]]
 | 
				
			||||||
 | 
					  - [[-1, 12], 1, Concat, [1]] # cat head P4
 | 
				
			||||||
 | 
					  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  - [-1, 1, Conv, [512, 3, 2]]
 | 
				
			||||||
 | 
					  - [[-1, 9], 1, Concat, [1]] # cat head P5
 | 
				
			||||||
 | 
					  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
 | 
				
			||||||
		Reference in New Issue
	
	Block a user