diff --git a/fed_example/__init__.py b/fed_example/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/fed_example/res18Train.py b/fed_example/res18Train.py deleted file mode 100644 index aef3011..0000000 --- a/fed_example/res18Train.py +++ /dev/null @@ -1,155 +0,0 @@ -import argparse -import torch -import os -from torch import optim -from torch.optim import lr_scheduler -from fed_example.utils.data_utils import get_data -from fed_example.utils.model_utils import get_model -from fed_example.utils.train_utils import train_model, validate_model, v3_update_model_weights - - -def main(args): - device = torch.device(args.device) - - # 数据加载器 - loader1, loader2, loader3, subset_len, val_loader = get_data( - args.train_path, args.val_path, args.batch_size, args.number_workers - ) - - # 模型 get_model(name='ResNet', number_class=2, device=device, resnet_type='resnet18') - model_a = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) - model_b = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) - model_c = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) - # 添加全局模型 - global_model = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device) - - if args.resume_training: - model_a.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_a.pth'))) - model_b.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_b.pth'))) - model_c.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_c.pth'))) - print("已加载之前保存的模型参数继续训练") - - # 优化器和损失函数 - criterion = torch.nn.BCEWithLogitsLoss().to(device) - - optimizer_a = optim.Adam(model_a.parameters(), lr=args.lr, weight_decay=5e-4) - optimizer_b = optim.Adam(model_b.parameters(), lr=args.lr, weight_decay=5e-4) - optimizer_c = optim.Adam(model_c.parameters(), lr=args.lr, weight_decay=5e-4) - scheduler_a = lr_scheduler.ReduceLROnPlateau(optimizer_a, mode='min', factor=0.5, patience=2, verbose=True) - scheduler_b = lr_scheduler.ReduceLROnPlateau(optimizer_b, mode='min', factor=0.5, patience=2, verbose=True) - scheduler_c = lr_scheduler.ReduceLROnPlateau(optimizer_c, mode='min', factor=0.5, patience=2, verbose=True) - - # 初始化最优验证损失和模型路径 - best_val_loss_a = float('inf') - best_val_loss_b = float('inf') - best_val_loss_c = float('inf') - - save_dir = args.save_dir - os.makedirs(save_dir, exist_ok=True) - - # 训练与验证 - for epoch in range(args.epochs): - print(f'Epoch {epoch + 1}/{args.epochs}') - - # 训练模型 - loss_a = train_model(device, model_a, loader1, optimizer_a, criterion, epoch, 'model_a') - loss_b = train_model(device, model_b, loader2, optimizer_b, criterion, epoch, 'model_b') - loss_c = train_model(device, model_c, loader3, optimizer_c, criterion, epoch, 'model_c') - - # 验证模型 - val_loss_a, val_acc_a, val_auc_a = validate_model(device, model_a, val_loader, criterion, epoch, 'model_a') - val_loss_b, val_acc_b, val_auc_b = validate_model(device, model_b, val_loader, criterion, epoch, 'model_b') - val_loss_c, val_acc_c, val_auc_c = validate_model(device, model_c, val_loader, criterion, epoch, 'model_c') - - if args.save_model and val_loss_a < best_val_loss_a: - best_val_loss_a = val_loss_a - torch.save(model_a.state_dict(), os.path.join(save_dir, 'best_model_a.pth')) - print(f"Best model_a saved with val_loss: {best_val_loss_a:.4f}") - - if args.save_model and val_loss_b < best_val_loss_b: - best_val_loss_b = val_loss_b - torch.save(model_b.state_dict(), os.path.join(save_dir, 'best_model_b.pth')) - print(f"Best model_b saved with val_loss: {best_val_loss_b:.4f}") - - if args.save_model and val_loss_c < best_val_loss_c: - best_val_loss_c = val_loss_c - torch.save(model_c.state_dict(), os.path.join(save_dir, 'best_model_c.pth')) - print(f"Best model_c saved with val_loss: {best_val_loss_c:.4f}") - - print( - f'Model A - Loss: {loss_a:.4f}, Val Loss: {val_loss_a:.4f}, Val Acc: {val_acc_a:.4f}, AUC: {val_auc_a:.4f}') - print( - f'Model B - Loss: {loss_b:.4f}, Val Loss: {val_loss_b:.4f}, Val Acc: {val_acc_b:.4f}, AUC: {val_auc_b:.4f}') - print( - f'Model C - Loss: {loss_c:.4f}, Val Loss: {val_loss_c:.4f}, Val Acc: {val_acc_c:.4f}, AUC: {val_auc_c:.4f}') - - # 更新模型 A 的权重,每 3 轮 1 - val_acc_a, val_auc_a, val_acc_a_threshold = v3_update_model_weights( - epoch=epoch, - model_to_update=model_a, - other_models=[model_a, model_b, model_c], - global_model=global_model, - losses=[loss_a, loss_b, loss_c], - val_loader=val_loader, - device=device, - val_auc_threshold=val_auc_a, - validate_model=validate_model, - criterion=criterion, - update_frequency=1 - ) - - # 更新模型 B 的权重,每 5 轮1 - val_acc_b, val_auc_b, val_acc_b_threshold = v3_update_model_weights( - epoch=epoch, - model_to_update=model_b, - other_models=[model_a, model_b, model_c], - global_model=global_model, - losses=[loss_a, loss_b, loss_c], - val_loader=val_loader, - device=device, - val_auc_threshold=val_auc_b, - validate_model=validate_model, - criterion=criterion, - update_frequency=1 - ) - - # 更新模型 C 的权重,每 2 轮 1 - val_acc_c, val_auc_c, val_acc_c_threshold = v3_update_model_weights( - epoch=epoch, - model_to_update=model_c, - other_models=[model_a, model_b, model_c], - global_model=global_model, - losses=[loss_a, loss_b, loss_c], - val_loader=val_loader, - device=device, - val_auc_threshold=val_auc_c, - validate_model=validate_model, - criterion=criterion, - update_frequency=1 - ) - - print("Training complete! Best models saved.") - - -if __name__ == '__main__': - parser = argparse.ArgumentParser() - parser.add_argument('--model_name', type=str, default='resnet18_psa', help='Model name') - parser.add_argument('--deep_backbone', type=str, default='*', help='deeplab backbone') - parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/train') - parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/val') - # parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/train') - # parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/val') - parser.add_argument('--epochs', type=int, default=10) - parser.add_argument('--batch_size', type=int, default=16) - parser.add_argument('--number_workers', type=int, default=8) - parser.add_argument('--number_class', type=int, default=1) - parser.add_argument('--device', type=str, default='cuda:0') - parser.add_argument('--lr', type=float, default=0.00005) - parser.add_argument('--save_dir', type=str, - default='/media/terminator/实验&代码/yhs/output/work2/resnet18_psa/c40/total/e10', - help='Directory to save best models') - parser.add_argument('--save_model', type=bool, default=True, help='是否保存最优模型') - parser.add_argument('--resume_training', type=bool, default=False, help='是否从保存的模型参数继续训练') - args = parser.parse_args() - - main(args) diff --git a/fed_example/utils/__init__.py b/fed_example/utils/__init__.py deleted file mode 100644 index e69de29..0000000 diff --git a/fed_example/utils/data_utils.py b/fed_example/utils/data_utils.py deleted file mode 100644 index e7f322f..0000000 --- a/fed_example/utils/data_utils.py +++ /dev/null @@ -1,239 +0,0 @@ -import os -from collections import Counter - -import torch -from PIL import Image -from sklearn.model_selection import train_test_split -from torch.utils.data import DataLoader -from torch.utils.data import Dataset, random_split -from torchvision import transforms, datasets - - -class CustomImageDataset(Dataset): - def __init__(self, root_dir, transform=None): - self.root_dir = root_dir - self.transform = transform - self.image_paths = [] - self.labels = [] - - # 遍历 root_dir 下的子文件夹 0 和 1 - for label in [0, 1]: - folder_path = os.path.join(root_dir, str(label)) - if os.path.isdir(folder_path): - for img_name in os.listdir(folder_path): - img_path = os.path.join(folder_path, img_name) - self.image_paths.append(img_path) - self.labels.append(label) - - # 打印用于调试的图像路径和标签 - # print("Loaded image paths and labels:") - # for path, label in zip(self.image_paths[:5], self.labels[:5]): - # print(f"Path: {path}, Label: {label}") - # print(f"Total samples: {len(self.image_paths)}\n") - - def __len__(self): - return len(self.image_paths) - - def __getitem__(self, idx): - img_path = self.image_paths[idx] - label = self.labels[idx] - image = Image.open(img_path).convert("RGB") - - if self.transform: - image = self.transform(image) - - return image, label - - -def get_test_data(test_image_path, batch_size, nw): - data_transform = transforms.Compose([ - transforms.Resize((256, 256)), - transforms.ToTensor(), - transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - ]) - - # test_dataset = datasets.ImageFolder(root=test_image_path, transform=data_transform) - - test_dataset = CustomImageDataset(root_dir=test_image_path, transform=data_transform) - test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=nw) - return test_loader - - -def get_Onedata(train_image_path, val_image_path, batch_size, num_workers): - """ - 加载完整的训练数据集和验证数据集。 - """ - data_transform = { - "train": transforms.Compose([ - transforms.Resize((256, 256)), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - ]), - "val": transforms.Compose([ - transforms.Resize((256, 256)), - transforms.ToTensor(), - transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - ]), - } - - # 创建训练和验证数据集 - train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"]) - val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"]) - - # 创建数据加载器 - train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) - val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) - - return train_loader, val_loader - - -def get_data(train_image_path, val_image_path, batch_size, num_workers): - data_transform = { - "train": transforms.Compose([ - transforms.Resize((256, 256)), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - ]), - "val": transforms.Compose([ - transforms.Resize((256, 256)), - transforms.ToTensor(), - transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - ]), - "test": transforms.Compose([ - transforms.Resize((256, 256)), - transforms.ToTensor(), - transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) - ]), - } - - train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"]) - val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"]) - - # 切分数据集为三个等分 - train_len = (len(train_dataset) // 3) * 3 - train_dataset_truncated = torch.utils.data.Subset(train_dataset, range(train_len)) - subset_len = train_len // 3 - dataset1, dataset2, dataset3 = random_split(train_dataset_truncated, [subset_len] * 3) - - loader1 = DataLoader(dataset1, batch_size=batch_size, shuffle=True, num_workers=num_workers) - loader2 = DataLoader(dataset2, batch_size=batch_size, shuffle=True, num_workers=num_workers) - loader3 = DataLoader(dataset3, batch_size=batch_size, shuffle=True, num_workers=num_workers) - val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) - - return loader1, loader2, loader3, subset_len, val_loader - - -def get_Fourdata(train_path, val_path, batch_size, num_workers): - """ - 加载训练集和验证集。 - 包括 4 个客户端验证集(df、f2f、fs、nt)和 1 个全局验证集。 - - Args: - train_path (str): 训练数据路径 - val_path (str): 验证数据路径 - batch_size (int): 批量大小 - num_workers (int): DataLoader 的工作线程数 - - Returns: - tuple: 包含 4 个客户端训练和验证加载器,以及全局验证加载器 - """ - # 数据预处理 - train_transform = transforms.Compose([ - transforms.Resize((256, 256)), - transforms.RandomHorizontalFlip(), - transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) - ]) - - val_transform = transforms.Compose([ - transforms.Resize((256, 256)), - transforms.ToTensor(), - transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) - ]) - - # 定义 4 个客户端数据集路径 - client_names = ['df', 'f2f', 'fs', 'nt'] - client_train_loaders = [] - client_val_loaders = [] - - for client in client_names: - client_train_path = os.path.join(train_path, client) - client_val_path = os.path.join(val_path, client) - - # 加载客户端训练数据 - train_dataset = datasets.ImageFolder(root=client_train_path, transform=train_transform) - train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers) - - # 加载客户端验证数据 - val_dataset = datasets.ImageFolder(root=client_val_path, transform=val_transform) - val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) - - client_train_loaders.append(train_loader) - client_val_loaders.append(val_loader) - - # 全局验证集 - global_val_dataset = datasets.ImageFolder(root=val_path, transform=val_transform) - global_val_loader = DataLoader(global_val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) - - return (*client_train_loaders, *client_val_loaders, global_val_loader) - - -def get_federated_data(train_path, val_path, num_clients=3, batch_size=16, num_workers=8): - """ - 将数据集划分为多个客户端,每个客户端拥有独立的训练和验证数据。 - """ - # 加载完整数据集 - full_train_dataset = CustomImageDataset(root_dir=train_path, transform=get_transform("train")) - full_val_dataset = CustomImageDataset(root_dir=val_path, transform=get_transform("val")) - - # 划分客户端训练集 - client_train_datasets = random_split(full_train_dataset, [len(full_train_dataset) // num_clients] * num_clients) - - # 创建客户端数据加载器 - client_train_loaders = [ - DataLoader(ds, batch_size=batch_size, shuffle=True, num_workers=num_workers) - for ds in client_train_datasets - ] - - # 全局验证集 - global_val_loader = DataLoader(full_val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers) - - return client_train_loaders, global_val_loader - - -def main(): - # 设置参数 - train_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/train" - val_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/val" - batch_size = 4 - num_workers = 2 - - # 获取数据加载器 - loader1, loader2, loader3, subset_len, val_loader = get_data(train_image_path, val_image_path, batch_size, - num_workers) - - # 统计标签数量和类型 - train_labels = [] - for dataset in [loader1, loader2, loader3]: - for _, labels in dataset: - train_labels.extend(labels.tolist()) - - val_labels = [] - for _, labels in val_loader: - val_labels.extend(labels.tolist()) - - # 使用 Counter 统计标签数量 - train_label_counts = Counter(train_labels) - val_label_counts = Counter(val_labels) - - # 打印统计结果 - print("Training Dataset - Label Counts:", train_label_counts) - print("Validation Dataset - Label Counts:", val_label_counts) - print("Label Types in Training:", set(train_labels)) - print("Label Types in Validation:", set(val_labels)) - - -if __name__ == "__main__": - main() diff --git a/fed_example/utils/model_utils.py b/fed_example/utils/model_utils.py deleted file mode 100644 index 71664ad..0000000 --- a/fed_example/utils/model_utils.py +++ /dev/null @@ -1,65 +0,0 @@ -import torch -from torch import nn -from torchvision import models - -from Deeplab.deeplab import DeepLab_F -from Deeplab.resnet_psa import BasicBlockWithPSA -from Deeplab.resnet_psa_v2 import ResNet -from model_base.efNet_base_model import DeepLab -from model_base.efficientnet import EfficientNet -from model_base.resnet_more import CustomResNet -from model_base.xcption import Xception - - -def get_model(name, number_class, device, backbone): - """ - 根据指定的模型名称加载模型,并根据任务类别数调整最后的分类层。 - - Args: - name (str): 模型名称 ('Vgg', 'ResNet', 'EfficientNet', 'Xception')。 - number_class (int): 分类类别数。 - device (torch.device): 设备 ('cuda' or 'cpu')。 - resnet_type (str): ResNet类型 ('resnet18', 'resnet34', 'resnet50', 'resnet101', etc.)。 - - Returns: - nn.Module: 经过修改的模型。 - """ - if name == 'Vgg': - model = models.vgg16_bn(pretrained=True).to(device) - model.classifier[6] = nn.Linear(model.classifier[6].in_features, number_class) - elif name == 'ResNet18': - model = CustomResNet(resnet_type='resnet18', num_classes=number_class, pretrained=True).to(device) - elif name == 'ResNet34': - model = CustomResNet(resnet_type='resnet34', num_classes=number_class, pretrained=True).to(device) - elif name == 'ResNet50': - model = CustomResNet(resnet_type='resnet50', num_classes=number_class, pretrained=True).to(device) - elif name == 'ResNet101': - model = CustomResNet(resnet_type='resnet101', num_classes=number_class, pretrained=True).to(device) - elif name == 'ResNet152': - model = CustomResNet(resnet_type='resnet152', num_classes=number_class, pretrained=True).to(device) - elif name == 'EfficientNet': - # 使用自定义的 DeepLab 类加载 EfficientNet - model = DeepLab(backbone='efficientnet', num_classes=number_class).to(device) - elif name == 'Xception': - model = Xception( - in_planes=3, - num_classes=number_class, - pretrained=True, - pretrained_path="/home/terminator/1325/yhs/fedLeaning/pre_model/xception-43020ad28.pth" - ).to(device) - elif name == 'DeepLab': - # 使用自定义的 DeepLab 类加载 EfficientNet - model = DeepLab_F(num_classes=1, backbone=backbone).to(device) - elif name == 'resnet18_psa': - model = ResNet(BasicBlockWithPSA, [2, 2, 2, 2], number_class) - else: - raise ValueError(f"Model {name} is not supported.") - return model - -def get_federated_model(device): - """初始化客户端模型和全局模型""" - client_models = [ - get_model("resnet18_psa", 1, device, "*") for _ in range(3) - ] - global_model = get_model("resnet18_psa", 1, device, "*") - return client_models, global_model \ No newline at end of file diff --git a/fed_example/utils/train_utils.py b/fed_example/utils/train_utils.py deleted file mode 100644 index 6992eb2..0000000 --- a/fed_example/utils/train_utils.py +++ /dev/null @@ -1,370 +0,0 @@ -import numpy as np -import torch -from tqdm import tqdm -from sklearn.metrics import roc_auc_score, accuracy_score -import copy -import torch.nn.functional as F -import random - - -def train_deepmodel(device, model, loader, optimizer, criterion, epoch, model_name): - model.train() - running_loss = 0.0 - corrects = 0.0 - alpha = 1 - beta = 0.1 - for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'): - inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 - optimizer.zero_grad() - - outputs, re_img = model(inputs) - loss = criterion(outputs.squeeze(), labels.float()) - loss_F1 = F.l1_loss(re_img, inputs) - loss = alpha * loss + beta * loss_F1 - loss.backward() - optimizer.step() - - running_loss += loss.item() - - avg_loss = running_loss / len(loader) - print(f'{model_name} Training Loss: {avg_loss:.4f}') - return avg_loss - - -def validate_deepmodel(device, model, loader, criterion, epoch, model_name): - model.eval() - running_loss = 0.0 - correct, total = 0, 0 - all_labels, all_preds = [], [] - val_corrects = 0.0 - alpha = 1 - beta = 0.1 - - with torch.no_grad(): - for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'): - inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 - - outputs, re_img = model(inputs) - - # 将 logits 转换为预测 - predicted = torch.sigmoid(outputs).data - all_preds.extend(predicted.cpu().numpy()) - all_labels.extend(labels.cpu().numpy()) - - # loss = criterion(outputs.squeeze(), labels.float()) - loss = criterion(outputs.squeeze(), labels.float()) - loss_F1 = F.l1_loss(re_img, inputs) - loss = alpha * loss + beta * loss_F1 - running_loss += loss.item() - - auc = roc_auc_score(all_labels, all_preds) - predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组 - acc = accuracy_score(all_labels, predicted_labels) - avg_loss = running_loss / len(loader) - print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}') - return avg_loss, acc, auc - - -def test_deepmodel(device, model, loader): - model.eval() - all_labels, all_preds = [], [] - - with torch.no_grad(): - for inputs, labels in tqdm(loader, desc=f'Testing', unit='batch'): - inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 - outputs, re_img = model(inputs) - predicted = torch.sigmoid(outputs).data # 将 logits 转换为预测 - - # 收集预测值和真实标签 - all_preds.extend(predicted.cpu().numpy()) - all_labels.extend(labels.cpu().numpy()) - - # 将预测值转换为二值标签 - predicted_labels = (np.array(all_preds) >= 0.5).astype(int) - - # 计算准确率和AUC - acc = accuracy_score(all_labels, predicted_labels) - auc = roc_auc_score(all_labels, all_preds) - - print(f'Test Accuracy: {acc:.4f}, Test AUC: {auc:.4f}') - return acc, auc - - -# def train_model(device, model, loader, optimizer, criterion, epoch, model_name): -# model.train() -# running_loss = 0.0 -# for i, (inputs, labels) in enumerate(tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch')): -# inputs, labels = inputs.float().to(device), labels.float().to(device) # 确保数据格式正确 -# optimizer.zero_grad() -# -# outputs = model(inputs) -# loss = criterion(outputs.squeeze(), labels) -# -# # 随机打印部分输出和标签,检查格式 -# if i % 10 == 0: # 每100个批次打印一次 -# print(f"Batch {i} - Sample Output: {outputs[0].item():.4f}, Sample Label: {labels[0].item()}") -# -# # 检查损失值是否异常 -# if loss.item() < 0: -# print(f"Warning: Negative loss detected at batch {i}. Loss: {loss.item()}") -# -# loss.backward() -# optimizer.step() -# -# running_loss += loss.item() -# -# avg_loss = running_loss / len(loader) -# print(f'{model_name} Training Loss: {avg_loss:.4f}') -# return avg_loss - -def train_model(device, model, loader, optimizer, criterion, epoch, model_name): - model.train() - running_loss = 0.0 - for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'): - inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 - optimizer.zero_grad() - - outputs = model(inputs) - loss = criterion(outputs.squeeze(), labels.float()) - loss.backward() - optimizer.step() - - running_loss += loss.item() - - avg_loss = running_loss / len(loader) - print(f'{model_name} Training Loss: {avg_loss:.4f}') - return avg_loss - - -def validate_model(device, model, loader, criterion, epoch, model_name): - model.eval() - running_loss = 0.0 - correct, total = 0, 0 - all_labels, all_preds = [], [] - - with torch.no_grad(): - for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'): - inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上 - - outputs = model(inputs) - - # 将 logits 转换为预测 - predicted = torch.sigmoid(outputs).data - all_preds.extend(predicted.cpu().numpy()) - all_labels.extend(labels.cpu().numpy()) - - # loss = criterion(outputs.squeeze(), labels.float()) - loss = criterion(outputs.squeeze(), labels.float()) - running_loss += loss.item() - auc = roc_auc_score(all_labels, all_preds) - predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组 - acc = accuracy_score(all_labels, predicted_labels) - avg_loss = running_loss / len(loader) - print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}') - return avg_loss, acc, auc - - -# 权重聚合函数 -def aggregate_weights(weights_list, alpha=1 / 3, beta=1 / 3, gamma=1 / 3): - new_state_dict = copy.deepcopy(weights_list[0]) # 从模型a复制权重结构 - for key in new_state_dict.keys(): - new_state_dict[key] = (alpha * weights_list[0][key] + - beta * weights_list[1][key] + - gamma * weights_list[2][key]) - return new_state_dict - - -def v3_update_model_weights( - epoch, - model_to_update, - other_models, - global_model, - losses, - val_loader, - device, - val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值 - validate_model, - criterion, - update_frequency -): - """ - 根据给定的条件更新模型的权重。 - - 参数: - epoch (int): 当前训练轮次。 - model_to_update: 需要更新的模型。 - other_models (list): 其他模型列表,用于计算全局模型权重。 - global_model: 全局模型。 - losses (list): 各模型的损失值列表。 - val_loader: 验证数据的 DataLoader。 - device: 设备 ('cuda' 或 'cpu')。 - val_auc_threshold (float): 当前需要更新模型的验证 AUC。 - aggregate_weights (function): 权重聚合函数。 - validate_model (function): 验证模型的函数。 - update_frequency (int): 权重更新的频率。 - - 返回: - val_acc (float): 全局模型的验证精度。 - val_auc (float): 全局模型的验证 AUC。 - updated_val_auc_threshold (float): 更新后的验证 AUC。 - """ - if (epoch + 1) % update_frequency == 0: - # 获取所有模型的权重 - all_weights = [model.state_dict() for model in other_models] - avg_weights = aggregate_weights(all_weights) # 聚合权重 - - # 更新全局模型权重 - global_model.load_state_dict(avg_weights) - - # 计算加权平均损失 - weighted_loss = sum(loss * 0.33 for loss in losses) - print(f"Weighted Average Loss: {weighted_loss:.4f}") - - # 验证全局模型 - val_loss, val_acc, val_auc = validate_model(device, global_model, val_loader, criterion, epoch, 'global_model') - print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}') - - # 如果全局模型的 AUC 更高,则更新目标模型 - if val_auc > val_auc_threshold: - print(f'Updating model at epoch {epoch + 1}') - model_to_update.load_state_dict(global_model.state_dict()) - val_auc_threshold = val_auc # 更新 AUC 阈值 - - return val_acc, val_auc, val_auc_threshold - return None, None, val_auc_threshold - - -def update_model_weights( - epoch, - model_to_update, - other_models, - global_model, - losses, - val_loader, - device, - val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值 - validate_model, - criterion, - update_frequency -): - """ - 根据给定的条件更新模型的权重。 - - 参数: - epoch (int): 当前训练轮次。 - model_to_update: 需要更新的模型。 - other_models (list): 其他模型列表,用于计算全局模型权重。 - global_model: 全局模型。 - losses (list): 各模型的损失值列表。 - val_loader: 验证数据的 DataLoader。 - device: 设备 ('cuda' 或 'cpu')。 - val_auc_threshold (float): 当前需要更新模型的验证 AUC。 - aggregate_weights (function): 权重聚合函数。 - validate_model (function): 验证模型的函数。 - update_frequency (int): 权重更新的频率。 - - 返回: - val_acc (float): 全局模型的验证精度。 - val_auc (float): 全局模型的验证 AUC。 - updated_val_auc_threshold (float): 更新后的验证 AUC。 - """ - if (epoch + 1) % update_frequency == 0: - # 获取所有模型的权重 - all_weights = [model.state_dict() for model in other_models] - avg_weights = aggregate_weights(all_weights) # 聚合权重 - - # 更新全局模型权重 - global_model.load_state_dict(avg_weights) - - # 计算加权平均损失 - weighted_loss = sum(loss * 0.33 for loss in losses) - print(f"Weighted Average Loss: {weighted_loss:.4f}") - - # 验证全局模型 - val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch, - 'global_model') - print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}') - - # 如果全局模型的 AUC 更高,则更新目标模型 - if val_auc > val_auc_threshold: - print(f'Updating model at epoch {epoch + 1}') - model_to_update.load_state_dict(global_model.state_dict()) - val_auc_threshold = val_auc # 更新 AUC 阈值 - - return val_acc, val_auc, val_auc_threshold - return None, None, val_auc_threshold - - -def f_update_model_weights( - epoch, - model_to_update, - other_models, - global_model, - losses, - val_loader, - device, - val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值 - aggregate_weights, # 权重聚合函数 - validate_model, - criterion, - update_frequency -): - """ - 根据给定的条件更新模型的权重。 - - 参数: - epoch (int): 当前训练轮次。 - model_to_update: 需要更新的模型。 - other_models (list): 其他模型列表,用于计算全局模型权重。 - global_model: 全局模型。 - losses (list): 各模型的损失值列表。 - val_loader: 验证数据的 DataLoader。 - device: 设备 ('cuda' 或 'cpu')。 - val_auc_threshold (float): 当前需要更新模型的验证 AUC 阈值。 - aggregate_weights (function): 权重聚合函数。 - validate_model (function): 验证模型的函数。 - criterion: 损失函数。 - update_frequency (int): 权重更新的频率。 - - 返回: - val_acc (float): 全局模型的验证精度。 - val_auc (float): 全局模型的验证 AUC。 - updated_val_auc_threshold (float): 更新后的验证 AUC 阈值。 - """ - # 每隔指定的 epoch 更新一次模型权重 - - if (epoch + 1) % update_frequency == 0: - print(f"\n[Epoch {epoch + 1}] Updating global model weights...") - - # 获取其他模型的权重 - all_weights = [model.state_dict() for model in other_models] - - # 使用聚合函数计算全局权重 - avg_weights = aggregate_weights(all_weights) - print("Global model weights aggregated.") - - # 更新全局模型权重 - global_model.load_state_dict(avg_weights) - - # 计算加权平均损失 - weighted_loss = sum(loss * (1 / len(losses)) for loss in losses) # 平均加权 - print(f"Weighted Average Loss: {weighted_loss:.4f}") - - # 验证全局模型性能 - val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch, - 'global_model') - print(f"[Global Model] Validation Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}, AUC: {val_auc:.4f}") - - # 如果全局模型 AUC 高于阈值,则更新目标模型权重 - if val_auc > val_auc_threshold: - print(f"Global model AUC improved ({val_auc:.4f} > {val_auc_threshold:.4f}). Updating target model.") - model_to_update.load_state_dict(global_model.state_dict()) - val_auc_threshold = val_auc # 更新 AUC 阈值 - else: - print( - f"Global model AUC did not improve ({val_auc:.4f} <= {val_auc_threshold:.4f}). No update to target model.") - - return val_acc, val_auc, val_auc_threshold - - # 如果未到达更新频率,返回当前的 AUC 阈值 - return None, None, val_auc_threshold