删除实例模块
This commit is contained in:
parent
abd033b831
commit
d1ed958db5
@ -1,74 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import cv2
|
|
||||||
from skimage.metrics import structural_similarity as ssim
|
|
||||||
from skimage.filters import sobel
|
|
||||||
from sklearn.metrics import mutual_info_score
|
|
||||||
|
|
||||||
|
|
||||||
# Helper to compute mutual information between two grayscale images
|
|
||||||
def evaluate_mutual_information(img1_gray, img2_gray):
|
|
||||||
hist_2d, _, _ = np.histogram2d(img1_gray.ravel(), img2_gray.ravel(), bins=256)
|
|
||||||
pxy = hist_2d / float(np.sum(hist_2d))
|
|
||||||
px = np.sum(pxy, axis=1)
|
|
||||||
py = np.sum(pxy, axis=0)
|
|
||||||
px_py = np.outer(px, py)
|
|
||||||
nzs = pxy > 0
|
|
||||||
mi = np.sum(pxy[nzs] * np.log(pxy[nzs] / px_py[nzs]))
|
|
||||||
return mi
|
|
||||||
|
|
||||||
|
|
||||||
# Compute SSIM between two grayscale images
|
|
||||||
def evaluate_registration_ssim(img1_gray, img2_gray):
|
|
||||||
return ssim(img1_gray, img2_gray)
|
|
||||||
|
|
||||||
|
|
||||||
# Entropy of grayscale image (fusion quality)
|
|
||||||
def evaluate_fusion_entropy(fusion_img):
|
|
||||||
gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
|
|
||||||
hist = hist.ravel() / hist.sum()
|
|
||||||
entropy = -np.sum(hist * np.log2(hist + 1e-9))
|
|
||||||
return entropy
|
|
||||||
|
|
||||||
|
|
||||||
# Edge strength using Sobel (fusion quality)
|
|
||||||
def evaluate_fusion_edges(fusion_img):
|
|
||||||
gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
edges = sobel(gray.astype(float) / 255.0)
|
|
||||||
return np.mean(edges)
|
|
||||||
|
|
||||||
|
|
||||||
# SSIM between fused image and one of the sources
|
|
||||||
def evaluate_fusion_ssim(fusion_img, reference_img):
|
|
||||||
fusion_gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
ref_gray = cv2.cvtColor(reference_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
return ssim(fusion_gray, ref_gray)
|
|
||||||
|
|
||||||
|
|
||||||
# Return all in one place (stub images would be required to test)
|
|
||||||
def summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim):
|
|
||||||
return {
|
|
||||||
"Registration SSIM": evaluate_registration_ssim(img1_gray, img2_gray),
|
|
||||||
"Mutual Information": evaluate_mutual_information(img1_gray, img2_gray),
|
|
||||||
"Fusion Entropy": evaluate_fusion_entropy(fusion_img),
|
|
||||||
"Fusion Edge Strength": evaluate_fusion_edges(fusion_img),
|
|
||||||
"Fusion SSIM (vs Ref)": evaluate_fusion_ssim(fusion_img, ref_img_for_ssim),
|
|
||||||
}
|
|
||||||
|
|
||||||
# 将所有评价封装成一个高层函数 evaluate_all
|
|
||||||
def evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim, verbose=True):
|
|
||||||
"""
|
|
||||||
评估图像配准和融合质量的通用函数
|
|
||||||
:param img1_gray: 可见光灰度图像(原图)
|
|
||||||
:param img2_gray: 红外灰度图像(配准后)
|
|
||||||
:param fusion_img: 融合图像(RGB)
|
|
||||||
:param ref_img_for_ssim: 可见光RGB图,用于对比SSIM
|
|
||||||
:param verbose: 是否打印结果
|
|
||||||
:return: dict 评价指标结果
|
|
||||||
"""
|
|
||||||
results = summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim)
|
|
||||||
if verbose:
|
|
||||||
print("图像评价指标如下:")
|
|
||||||
for k, v in results.items():
|
|
||||||
print(f"{k}: {v:.4f}")
|
|
||||||
return results
|
|
@ -1,26 +0,0 @@
|
|||||||
from evaluate import *
|
|
||||||
|
|
||||||
# 创建模拟图像数据用于测试
|
|
||||||
# img1_gray:原始灰度图像(可见光)
|
|
||||||
# img2_gray:变换后的灰度图像(红外模拟)
|
|
||||||
# fusion_img:融合图像(可见光 + 红外)
|
|
||||||
# ref_img_for_ssim:参考图像(可见光RGB)
|
|
||||||
|
|
||||||
# 创建基础灰度图像(梯度)
|
|
||||||
img1_gray = np.tile(np.linspace(50, 200, 256).astype(np.uint8), (256, 1))
|
|
||||||
|
|
||||||
# 模拟配准后的图像:加一点噪声和平移
|
|
||||||
img2_gray = np.roll(img1_gray, shift=5, axis=1) # 平移模拟配准偏差
|
|
||||||
noise = np.random.normal(0, 5, img2_gray.shape).astype(np.uint8)
|
|
||||||
img2_gray = cv2.add(img2_gray, noise)
|
|
||||||
|
|
||||||
# 创建 RGB 可见光图(重复三个通道)
|
|
||||||
ref_img_for_ssim = cv2.merge([img1_gray] * 3)
|
|
||||||
|
|
||||||
# 创建融合图像(取两个灰度图平均后合并入RGB)
|
|
||||||
fusion_Y = cv2.addWeighted(img1_gray, 0.5, img2_gray, 0.5, 0)
|
|
||||||
fusion_img = cv2.merge([fusion_Y, img1_gray, img2_gray])
|
|
||||||
|
|
||||||
# 运行评价函数
|
|
||||||
scores = evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim)
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user