diff --git a/federated_learning/yolov8_fed.py b/federated_learning/yolov8_fed.py index baf3c76..dbadbe8 100644 --- a/federated_learning/yolov8_fed.py +++ b/federated_learning/yolov8_fed.py @@ -1,6 +1,7 @@ import glob import os from pathlib import Path +import json import yaml from ultralytics import YOLO @@ -15,121 +16,186 @@ def federated_avg(global_model, client_weights): total_samples = sum(n for _, n in client_weights) if total_samples == 0: raise ValueError("Total number of samples must be positive.") - + # 获取YOLO底层PyTorch模型参数 global_dict = global_model.model.state_dict() # 提取所有客户端的 state_dict 和对应样本数 state_dicts, sample_counts = zip(*client_weights) - + for key in global_dict: # 对每一层参数取平均 # if global_dict[key].data.dtype == torch.float32: # global_dict[key].data = torch.stack( # [w[key].float() for w in client_weights], 0 # ).mean(0) - + # 加权平均 if global_dict[key].dtype == torch.float32: # 只聚合浮点型参数 # 跳过 BatchNorm 层的统计量 - if any(x in key for x in ['running_mean', 'running_var', 'num_batches_tracked']): + if any( + x in key for x in ["running_mean", "running_var", "num_batches_tracked"] + ): continue # 按照样本数加权求和 - weighted_tensors = [sd[key].float() * (n / total_samples) - for sd, n in zip(state_dicts, sample_counts)] + weighted_tensors = [ + sd[key].float() * (n / total_samples) + for sd, n in zip(state_dicts, sample_counts) + ] global_dict[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0) - - # 解决模型参数不匹配问题 - try: + + # 解决模型参数不匹配问题 + # try: + # # 加载回YOLO模型 + # global_model.model.load_state_dict(global_dict) + # except RuntimeError as e: + # print('Ignoring "' + str(e) + '"') + # 加载回YOLO模型 global_model.model.load_state_dict(global_dict) - except RuntimeError as e: - print('Ignoring "' + str(e) + '"') - - # 添加调试输出 - print("\n=== 参数聚合检查 ===") - - # 选取一个典型参数层 - # sample_key = list(global_dict.keys())[10] - # original = global_dict[sample_key].data.mean().item() - # aggregated = torch.stack([w[sample_key] for w in client_weights]).mean().item() - # print(f"参数层 '{sample_key}' 变化: {original:.4f} → {aggregated:.4f}") - # print(f"客户端参数差异: {[w[sample_key].mean().item() for w in client_weights]}") - + # 随机选取一个非统计量层进行对比 - sample_key = next(k for k in global_dict if 'running_' not in k) - aggregated_mean = global_dict[sample_key].mean().item() - client_means = [sd[sample_key].float().mean().item() for sd in state_dicts] - print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}") - print(f"The average value of the layer for each client: {client_means}") - + # sample_key = next(k for k in global_dict if 'running_' not in k) + # aggregated_mean = global_dict[sample_key].mean().item() + # client_means = [sd[sample_key].float().mean().item() for sd in state_dicts] + # print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}") + # print(f"The average value of the layer for each client: {client_means}") + + # 定义多个关键层 + MONITOR_KEYS = [ + "model.0.conv.weight", # 输入层卷积 + "model.10.conv.weight", # 中间层卷积 + "model.22.dfl.conv.weight", # 输出层分类头 + ] + + with open("aggregation_check.txt", "a") as f: + f.write("\n=== 参数聚合检查 ===\n") + for key in MONITOR_KEYS: + if key not in global_dict: + continue + # 计算聚合后均值 + aggregated_mean = global_dict[key].mean().item() + # 计算各客户端均值 + client_means = [sd[key].float().mean().item() for sd in state_dicts] + + with open("aggregation_check.txt", "a") as f: + f.write(f"层 '{key}' 聚合后均值: {aggregated_mean:.6f}\n") + f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n") + f.write(f"客户端最大差异: {max(client_means) - min(client_means):.6f}\n\n") + return global_model # ------------ 修改训练流程 ------------ def federated_train(num_rounds, clients_data): + # ========== 新增:初始化指标记录 ========== + metrics = { + "round": [], + "val_mAP": [], # 每轮验证集mAP + "train_loss": [], # 每轮平均训练损失 + "client_mAPs": [], # 各客户端本地模型在验证集上的mAP + "communication_cost": [], # 每轮通信开销(MB) + } + # 初始化全局模型 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") - global_model = YOLO("../yolov8n.pt").to(device) + global_model = YOLO("../yolov8n.yaml").to(device) # 设置类别数 - global_model.model.nc = 1 - + # global_model.model.nc = 1 + for _ in range(num_rounds): client_weights = [] - + client_losses = [] # 记录各客户端的训练损失 + # 每个客户端本地训练 for data_path in clients_data: # 统计本地训练样本数 - with open(data_path, 'r') as f: + with open(data_path, "r") as f: config = yaml.safe_load(f) # Resolve img_dir relative to the YAML file's location yaml_dir = os.path.dirname(data_path) - img_dir = os.path.join(yaml_dir, config.get('train', data_path)) # 从配置文件中获取图像目录 - + img_dir = os.path.join( + yaml_dir, config.get("train", data_path) + ) # 从配置文件中获取图像目录 + # print(f"Image directory: {img_dir}") - num_samples = (len(glob.glob(os.path.join(img_dir, '*.jpg'))) + - len(glob.glob(os.path.join(img_dir, '*.png')))) + num_samples = (len(glob.glob(os.path.join(img_dir, "*.jpg"))) + + len(glob.glob(os.path.join(img_dir, "*.png"))) + + len(glob.glob(os.path.join(img_dir, "*.jpeg"))) + ) # print(f"Number of images: {num_samples}") - + # 克隆全局模型 local_model = copy.deepcopy(global_model) - + # 本地训练(保持你的原有参数设置) - local_model.train( + results = local_model.train( data=data_path, - epochs=16, # 每轮本地训练1个epoch - save_period=16, + epochs=4, # 每轮本地训练多少个epoch + # save_period=16, imgsz=640, # 图像大小 verbose=False, # 关闭冗余输出 - batch=-1 + batch=-1, ) - + + # 记录客户端训练损失 + # client_loss = results.results_dict['train_loss'] + # client_losses.append(client_loss) + # 收集模型参数及样本数 - client_weights.append((copy.deepcopy(local_model.model.state_dict()), num_samples)) - + client_weights.append( + (copy.deepcopy(local_model.model.state_dict()), num_samples) + ) + # 聚合参数更新全局模型 global_model = federated_avg(global_model, client_weights) - print(f"Round {_ + 1}/{num_rounds} completed.") - return global_model + + # ========== 评估全局模型 ========== + # 评估全局模型在验证集上的性能 + val_results = global_model.val( + data="/mnt/DATA/UAVdataset/data.yaml", # 指定验证集配置文件 + imgsz=640, + batch=-1, + verbose=False, + ) + val_mAP = val_results.box.map # 获取mAP@0.5 + + # 计算平均训练损失 + # avg_train_loss = sum(client_losses) / len(client_losses) + + # 计算通信开销(假设传输全部模型参数) + model_size = sum(p.numel() * 4 for p in global_model.model.parameters()) / ( + 1024**2 + ) # MB + + # 记录到指标容器 + metrics["round"].append(_ + 1) + metrics["val_mAP"].append(val_mAP) + # metrics['train_loss'].append(avg_train_loss) + metrics["communication_cost"].append(model_size) + # 打印当前轮次结果 + with open("aggregation_check.txt", "a") as f: + f.write(f"\n[Round {_ + 1}/{num_rounds}]") + f.write(f"Validation mAP@0.5: {val_mAP:.4f}") + # f.write(f"Average Train Loss: {avg_train_loss:.4f}") + f.write(f"Communication Cost: {model_size:.2f} MB\n") + + return global_model, metrics # ------------ 使用示例 ------------ if __name__ == "__main__": # 联邦训练配置 clients_config = [ - "/root/autodl-tmp/dataset/train1/train1.yaml", # 客户端1数据路径 - "/root/autodl-tmp/dataset/train2/train2.yaml" # 客户端2数据路径 + "/mnt/DATA/uav_dataset_fed/train1/train1.yaml", # 客户端1数据路径 + "/mnt/DATA/uav_dataset_fed/train2/train2.yaml", # 客户端2数据路径 ] - + # 运行联邦训练 - final_model = federated_train(num_rounds=10, clients_data=clients_config) - + final_model, metrics = federated_train(num_rounds=40, clients_data=clients_config) + # 保存最终模型 final_model.save("yolov8n_federated.pt") # final_model.export(format="onnx") # 导出为ONNX格式 - - # 检查1:确认模型保存 - # assert Path("yolov8n_federated.onnx").exists(), "模型导出失败" - - # 检查2:验证预测功能 - # results = final_model.predict("../dataset/val/images/VS_P65.jpg", save=True) - # assert len(results[0].boxes) > 0, "预测结果异常" + + with open("metrics.json", "w") as f: + json.dump(metrics, f, indent=4) diff --git a/yolov8.yaml b/yolov8.yaml new file mode 100644 index 0000000..c83adaf --- /dev/null +++ b/yolov8.yaml @@ -0,0 +1,49 @@ +# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license + +# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs +# Model docs: https://docs.ultralytics.com/models/yolov8 +# Task docs: https://docs.ultralytics.com/tasks/detect + +# Parameters +nc: 1 # number of classes +scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n' + # [depth, width, max_channels] + n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS + s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS + m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS + l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS + x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS + +# YOLOv8.0n backbone +backbone: + # [from, repeats, module, args] + - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2 + - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4 + - [-1, 3, C2f, [128, True]] + - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8 + - [-1, 6, C2f, [256, True]] + - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16 + - [-1, 6, C2f, [512, True]] + - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32 + - [-1, 3, C2f, [1024, True]] + - [-1, 1, SPPF, [1024, 5]] # 9 + +# YOLOv8.0n head +head: + - [-1, 1, nn.Upsample, [None, 2, "nearest"]] + - [[-1, 6], 1, Concat, [1]] # cat backbone P4 + - [-1, 3, C2f, [512]] # 12 + + - [-1, 1, nn.Upsample, [None, 2, "nearest"]] + - [[-1, 4], 1, Concat, [1]] # cat backbone P3 + - [-1, 3, C2f, [256]] # 15 (P3/8-small) + + - [-1, 1, Conv, [256, 3, 2]] + - [[-1, 12], 1, Concat, [1]] # cat head P4 + - [-1, 3, C2f, [512]] # 18 (P4/16-medium) + + - [-1, 1, Conv, [512, 3, 2]] + - [[-1, 9], 1, Concat, [1]] # cat head P5 + - [-1, 3, C2f, [1024]] # 21 (P5/32-large) + + - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5) \ No newline at end of file