Compare commits

...

5 Commits

Author SHA1 Message Date
myh
960b66a692 python包新加__init__文件 2025-04-20 15:21:19 +08:00
myh
ef3d521e4a 测试数据集文件 2025-04-20 15:20:40 +08:00
myh
3b80f237fa 联邦平均算法:结合yolov8 2025-04-20 15:20:16 +08:00
myh
f320e79702 更改项目结构 2025-04-20 15:19:55 +08:00
myh
34a5247dd2 联邦学习示例项目:更改结构 2025-04-20 15:19:24 +08:00
36 changed files with 210 additions and 15 deletions

View File

@ -3,9 +3,9 @@ import torch
import os
from torch import optim
from torch.optim import lr_scheduler
from util.data_utils import get_data
from util.model_utils import get_model
from util.train_utils import train_model, validate_model, update_model_weights, v3_update_model_weights
from fed_example.utils.data_utils import get_data
from fed_example.utils.model_utils import get_model
from fed_example.utils.train_utils import train_model, validate_model, v3_update_model_weights
def main(args):

View File

View File

@ -1,13 +1,12 @@
import os
from PIL import Image
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset, random_split
from collections import Counter
from torch.utils.data import DataLoader, Subset
from torchvision import transforms, datasets
import os
import torch
from PIL import Image
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader
from torch.utils.data import Dataset, random_split
from torchvision import transforms, datasets
class CustomImageDataset(Dataset):
@ -181,6 +180,29 @@ def get_Fourdata(train_path, val_path, batch_size, num_workers):
return (*client_train_loaders, *client_val_loaders, global_val_loader)
def get_federated_data(train_path, val_path, num_clients=3, batch_size=16, num_workers=8):
"""
将数据集划分为多个客户端每个客户端拥有独立的训练和验证数据
"""
# 加载完整数据集
full_train_dataset = CustomImageDataset(root_dir=train_path, transform=get_transform("train"))
full_val_dataset = CustomImageDataset(root_dir=val_path, transform=get_transform("val"))
# 划分客户端训练集
client_train_datasets = random_split(full_train_dataset, [len(full_train_dataset) // num_clients] * num_clients)
# 创建客户端数据加载器
client_train_loaders = [
DataLoader(ds, batch_size=batch_size, shuffle=True, num_workers=num_workers)
for ds in client_train_datasets
]
# 全局验证集
global_val_loader = DataLoader(full_val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return client_train_loaders, global_val_loader
def main():
# 设置参数
train_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/train"

View File

@ -55,3 +55,11 @@ def get_model(name, number_class, device, backbone):
else:
raise ValueError(f"Model {name} is not supported.")
return model
def get_federated_model(device):
"""初始化客户端模型和全局模型"""
client_models = [
get_model("resnet18_psa", 1, device, "*") for _ in range(3)
]
global_model = get_model("resnet18_psa", 1, device, "*")
return client_models, global_model

View File

@ -116,6 +116,7 @@ def test_deepmodel(device, model, loader):
# avg_loss = running_loss / len(loader)
# print(f'{model_name} Training Loss: {avg_loss:.4f}')
# return avg_loss
def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
model.train()
running_loss = 0.0
@ -331,6 +332,7 @@ def f_update_model_weights(
updated_val_auc_threshold (float): 更新后的验证 AUC 阈值
"""
# 每隔指定的 epoch 更新一次模型权重
if (epoch + 1) % update_frequency == 0:
print(f"\n[Epoch {epoch + 1}] Updating global model weights...")

View File

@ -0,0 +1,16 @@
# 创建测试目录结构
mkdir -p ./test_data/{client1,client2}/{train,val}/images
mkdir -p ./test_data/{client1,client2}/{train,val}/labels
# 生成虚拟数据各客户端仅需2张图片
for client in client1 client2; do
for split in train val; do
# 创建空图片128x128 RGB
magick -size 128x128 xc:white test_data/${client}/${split}/images/img1.jpg
magick -size 128x128 xc:black test_data/${client}/${split}/images/img2.jpg
# 创建示例标签文件
echo "0 0.5 0.5 0.2 0.2" > test_data/${client}/${split}/labels/img1.txt
echo "1 0.3 0.3 0.4 0.4" > test_data/${client}/${split}/labels/img2.txt
done
done

View File

@ -0,0 +1,4 @@
train: ../test_data/client1/train/images
val: ../test_data/client1/val/images
nc: 2
names: [ 'class0', 'class1' ]

View File

@ -0,0 +1,4 @@
train: ../test_data/client2/train/images
val: ../test_data/client2/val/images
nc: 2
names: [ 'class0', 'class1' ]

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

View File

@ -0,0 +1 @@
0 0.5 0.5 0.2 0.2

View File

@ -0,0 +1 @@
1 0.3 0.3 0.4 0.4

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

View File

@ -0,0 +1 @@
0 0.5 0.5 0.2 0.2

View File

@ -0,0 +1 @@
1 0.3 0.3 0.4 0.4

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

View File

@ -0,0 +1 @@
0 0.5 0.5 0.2 0.2

View File

@ -0,0 +1 @@
1 0.3 0.3 0.4 0.4

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 225 B

Binary file not shown.

View File

@ -0,0 +1 @@
0 0.5 0.5 0.2 0.2

View File

@ -0,0 +1 @@
1 0.3 0.3 0.4 0.4

Binary file not shown.

View File

@ -0,0 +1,131 @@
import glob
import os
from pathlib import Path
import yaml
from ultralytics import YOLO
import copy
import torch
# ------------ 新增联邦学习工具函数 ------------
def federated_avg(global_model, client_weights):
"""联邦平均核心算法"""
# 计算总样本数
total_samples = sum(n for _, n in client_weights)
if total_samples == 0:
raise ValueError("Total number of samples must be positive.")
# 获取YOLO底层PyTorch模型参数
global_dict = global_model.model.state_dict()
# 提取所有客户端的 state_dict 和对应样本数
state_dicts, sample_counts = zip(*client_weights)
for key in global_dict:
# 对每一层参数取平均
# if global_dict[key].data.dtype == torch.float32:
# global_dict[key].data = torch.stack(
# [w[key].float() for w in client_weights], 0
# ).mean(0)
# 加权平均
if global_dict[key].dtype == torch.float32: # 只聚合浮点型参数
# 跳过 BatchNorm 层的统计量
if any(x in key for x in ['running_mean', 'running_var', 'num_batches_tracked']):
continue
# 按照样本数加权求和
weighted_tensors = [sd[key].float() * (n / total_samples)
for sd, n in zip(state_dicts, sample_counts)]
global_dict[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
# 解决模型参数不匹配问题
try:
# 加载回YOLO模型
global_model.model.load_state_dict(global_dict)
except RuntimeError as e:
print('Ignoring "' + str(e) + '"')
# 添加调试输出
print("\n=== 参数聚合检查 ===")
# 选取一个典型参数层
# sample_key = list(global_dict.keys())[10]
# original = global_dict[sample_key].data.mean().item()
# aggregated = torch.stack([w[sample_key] for w in client_weights]).mean().item()
# print(f"参数层 '{sample_key}' 变化: {original:.4f} → {aggregated:.4f}")
# print(f"客户端参数差异: {[w[sample_key].mean().item() for w in client_weights]}")
# 随机选取一个非统计量层进行对比
sample_key = next(k for k in global_dict if 'running_' not in k)
aggregated_mean = global_dict[sample_key].mean().item()
client_means = [sd[sample_key].float().mean().item() for sd in state_dicts]
print(f"'{sample_key}' 聚合后均值: {aggregated_mean:.6f}")
print(f"各客户端该层均值: {client_means}")
return global_model
# ------------ 修改训练流程 ------------
def federated_train(num_rounds, clients_data):
# 初始化全局模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global_model = YOLO("yolov8n.pt").to(device)
# 设置类别数
global_model.model.nc = 2
for _ in range(num_rounds):
client_weights = []
# 每个客户端本地训练
for data_path in clients_data:
# 统计本地训练样本数
with open(data_path, 'r') as f:
config = yaml.safe_load(f)
# Resolve img_dir relative to the YAML file's location
yaml_dir = os.path.dirname(data_path)
img_dir = os.path.join(yaml_dir, config.get('train', data_path)) # 从配置文件中获取图像目录
print(f"Image directory: {img_dir}")
num_samples = len(glob.glob(os.path.join(img_dir, '*.jpg')))
print(f"Number of images: {num_samples}")
# 克隆全局模型
local_model = copy.deepcopy(global_model)
# 本地训练(保持你的原有参数设置)
local_model.train(
data=data_path,
epochs=1, # 每轮本地训练1个epoch
imgsz=128, # 图像大小
verbose=False # 关闭冗余输出
)
# 收集模型参数及样本数
client_weights.append((copy.deepcopy(local_model.model.state_dict()), num_samples))
# 聚合参数更新全局模型
global_model = federated_avg(global_model, client_weights)
return global_model
# ------------ 使用示例 ------------
if __name__ == "__main__":
# 联邦训练配置
clients_config = [
"./config/client1_data.yaml", # 客户端1数据路径
"./config/client2_data.yaml" # 客户端2数据路径
]
# 运行联邦训练
final_model = federated_train(num_rounds=1, clients_data=clients_config)
# 保存最终模型
# final_model.export(format="onnx") # 导出为ONNX格式
# 检查1确认模型保存
# assert Path("yolov8n_federated.onnx").exists(), "模型导出失败"
# 检查2验证预测功能
# results = final_model.predict("test_data/client1/train/images/img1.jpg")
# assert len(results[0].boxes) > 0, "预测结果异常"

Binary file not shown.

View File

@ -166,11 +166,11 @@ def main(matchimg_vi, matchimg_in):
def parse_args():
# 输入可见光和红外图像路径
visible_image_path = "../test/visible.jpg" # 可见光图片路径
infrared_image_path = "../test/infrared.jpg" # 红外图片路径
visible_image_path = "test/visible.jpg" # 可见光图片路径
infrared_image_path = "test/infrared.jpg" # 红外图片路径
# 输入可见光和红外视频路径
visible_video_path = "../test/visible.mp4" # 可见光视频路径
infrared_video_path = "../test/infrared.mp4" # 红外视频路径
visible_video_path = "test/visible.mp4" # 可见光视频路径
infrared_video_path = "test/infrared.mp4" # 红外视频路径
"""解析命令行参数"""
parser = argparse.ArgumentParser(description='图像融合与目标检测')
@ -277,7 +277,7 @@ if __name__ == '__main__':
if flag == 1:
# 显示并保存结果
cv2.imshow("Fusion with Detection", fusion_result)
cv2.imwrite("../output/fusion_result.jpg", fusion_result)
cv2.imwrite("output/fusion_result.jpg", fusion_result)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:

View File

Before

Width:  |  Height:  |  Size: 152 KiB

After

Width:  |  Height:  |  Size: 152 KiB

View File

Before

Width:  |  Height:  |  Size: 28 KiB

After

Width:  |  Height:  |  Size: 28 KiB

View File

Before

Width:  |  Height:  |  Size: 67 KiB

After

Width:  |  Height:  |  Size: 67 KiB