Compare commits

...

2 Commits

Author SHA1 Message Date
myh
be1e3627e7 评价指标测试 2025-04-21 17:51:38 +08:00
myh
d139f5afcf 评价指标 2025-04-21 17:51:32 +08:00
2 changed files with 100 additions and 0 deletions

View File

@ -0,0 +1,74 @@
import numpy as np
import cv2
from skimage.metrics import structural_similarity as ssim
from skimage.filters import sobel
from sklearn.metrics import mutual_info_score
# Helper to compute mutual information between two grayscale images
def evaluate_mutual_information(img1_gray, img2_gray):
hist_2d, _, _ = np.histogram2d(img1_gray.ravel(), img2_gray.ravel(), bins=256)
pxy = hist_2d / float(np.sum(hist_2d))
px = np.sum(pxy, axis=1)
py = np.sum(pxy, axis=0)
px_py = np.outer(px, py)
nzs = pxy > 0
mi = np.sum(pxy[nzs] * np.log(pxy[nzs] / px_py[nzs]))
return mi
# Compute SSIM between two grayscale images
def evaluate_registration_ssim(img1_gray, img2_gray):
return ssim(img1_gray, img2_gray)
# Entropy of grayscale image (fusion quality)
def evaluate_fusion_entropy(fusion_img):
gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist = hist.ravel() / hist.sum()
entropy = -np.sum(hist * np.log2(hist + 1e-9))
return entropy
# Edge strength using Sobel (fusion quality)
def evaluate_fusion_edges(fusion_img):
gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
edges = sobel(gray.astype(float) / 255.0)
return np.mean(edges)
# SSIM between fused image and one of the sources
def evaluate_fusion_ssim(fusion_img, reference_img):
fusion_gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
ref_gray = cv2.cvtColor(reference_img, cv2.COLOR_RGB2GRAY)
return ssim(fusion_gray, ref_gray)
# Return all in one place (stub images would be required to test)
def summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim):
return {
"Registration SSIM": evaluate_registration_ssim(img1_gray, img2_gray),
"Mutual Information": evaluate_mutual_information(img1_gray, img2_gray),
"Fusion Entropy": evaluate_fusion_entropy(fusion_img),
"Fusion Edge Strength": evaluate_fusion_edges(fusion_img),
"Fusion SSIM (vs Ref)": evaluate_fusion_ssim(fusion_img, ref_img_for_ssim),
}
# 将所有评价封装成一个高层函数 evaluate_all
def evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim, verbose=True):
"""
评估图像配准和融合质量的通用函数
:param img1_gray: 可见光灰度图像原图
:param img2_gray: 红外灰度图像配准后
:param fusion_img: 融合图像RGB
:param ref_img_for_ssim: 可见光RGB图用于对比SSIM
:param verbose: 是否打印结果
:return: dict 评价指标结果
"""
results = summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim)
if verbose:
print("图像评价指标如下:")
for k, v in results.items():
print(f"{k}: {v:.4f}")
return results

View File

@ -0,0 +1,26 @@
from evaluate import *
# 创建模拟图像数据用于测试
# img1_gray原始灰度图像可见光
# img2_gray变换后的灰度图像红外模拟
# fusion_img融合图像可见光 + 红外)
# ref_img_for_ssim参考图像可见光RGB
# 创建基础灰度图像(梯度)
img1_gray = np.tile(np.linspace(50, 200, 256).astype(np.uint8), (256, 1))
# 模拟配准后的图像:加一点噪声和平移
img2_gray = np.roll(img1_gray, shift=5, axis=1) # 平移模拟配准偏差
noise = np.random.normal(0, 5, img2_gray.shape).astype(np.uint8)
img2_gray = cv2.add(img2_gray, noise)
# 创建 RGB 可见光图(重复三个通道)
ref_img_for_ssim = cv2.merge([img1_gray] * 3)
# 创建融合图像取两个灰度图平均后合并入RGB
fusion_Y = cv2.addWeighted(img1_gray, 0.5, img2_gray, 0.5, 0)
fusion_img = cv2.merge([fusion_Y, img1_gray, img2_gray])
# 运行评价函数
scores = evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim)