Compare commits

...

4 Commits

Author SHA1 Message Date
myh
0d84bba234 测试图片 2025-04-19 19:01:07 +08:00
myh
c81de41b3e 添加三种不同模式 2025-04-19 18:59:35 +08:00
myh
b8ffb902b3 忽略三方库文件夹 2025-04-19 18:59:14 +08:00
myh
da36a8fc09 添加参数控制列表 2025-04-19 18:58:44 +08:00
4 changed files with 115 additions and 65 deletions

1
.gitignore vendored
View File

@ -297,3 +297,4 @@ Network Trash Folder
Temporary Items
.apdisk
/whl_packages/

View File

@ -1,10 +1,8 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time :
# @Author :
# @File : Image_Registration_test.py
import time
import argparse
import cv2
import numpy as np
@ -128,7 +126,7 @@ def Images_matching(img_base, img_target):
print("Not enough matches are found - {}/{}".format(len(good), 4))
return 0, None, 0
else:
# print(len(dst_pts), len(src_pts), "配准坐标点")
print(len(dst_pts), len(src_pts), "配准坐标点")
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
end = time.time()
times = end - start
@ -201,70 +199,121 @@ def main(matchimg_vi, matchimg_in):
return 0, None, 0
def parse_args():
# 输入可见光和红外图像路径
visible_image_path = "../test/visible.jpg" # 可见光图片路径
infrared_image_path = "../test/infrared.jpg" # 红外图片路径
# 输入可见光和红外视频路径
visible_video_path = "../test/visible.mp4" # 可见光视频路径
infrared_video_path = "../test/infrared.mp4" # 红外视频路径
"""解析命令行参数"""
parser = argparse.ArgumentParser(description='图像融合与目标检测')
parser.add_argument('--mode', type=str, choices=['video', 'image'], default='image',
help='输入模式video视频流 或 image静态图片')
# 区分摄像头或视频文件
parser.add_argument('--source', type=str, choices=['camera', 'file'],
help='视频输入类型camera摄像头或 file视频文件')
# 视频模式参数
parser.add_argument('--video1', type=str, default=visible_video_path,
help='可见光视频路径仅在source=file时需要')
parser.add_argument('--video2', type=str, default=infrared_video_path,
help='红外视频路径仅在source=file时需要')
# 摄像头模式参数
parser.add_argument('--camera_id1', type=int, default=0,
help='可见光摄像头ID仅在source=camera时需要默认0')
parser.add_argument('--camera_id2', type=int, default=1,
help='红外摄像头ID仅在source=camera时需要默认1')
parser.add_argument('--output', type=str, default='output.mp4',
help='输出视频路径仅在video模式需要')
# 图片模式参数
parser.add_argument('--visible', type=str, default=visible_image_path,
help='可见光图片路径仅在image模式需要')
parser.add_argument('--infrared', type=str, default=infrared_image_path,
help='红外图片路径仅在image模式需要')
return parser.parse_args()
if __name__ == '__main__':
time_all = 0
dots = 0
i = 0
# fourcc = cv2.VideoWriter_fourcc(*'XVID')
# capture = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/infrared.mp4")
# capture2 = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/visible.mp4")
# fps = capture.get(cv2.CAP_PROP_FPS)
# out = cv2.VideoWriter('output2.mp4', fourcc, fps, (640, 480))
# # 持续读取摄像头数据
# while True:
# read_code, frame = capture.read() # 红外帧
# read_code2, frame2 = capture2.read() # 可见光帧
# if not read_code:
# break
# i += 1
# # frame = cv2.resize(frame, (1920, 1080))
# # frame2 = cv2.resize(frame2, (640, 512))
#
# # 转换为灰度图(红外图像处理)
# frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#
# # 调用main函数进行融合和检测
# flag, fusion, dot = main(frame2, frame_gray)
#
# if flag == 1:
# # 显示带检测结果的融合图像
# cv2.imshow("Fusion with YOLOv8 Detection", fusion)
# out.write(fusion)
#
# if cv2.waitKey(1) == ord('q'):
# break
# # 释放资源
# capture.release()
# capture2.release()
# cv2.destroyAllWindows()
# ave = time_all / i
# print(ave, "平均时间")
# cv2.destroyAllWindows()
args = parse_args()
# === 新增静态图片测试代码 ===
# 输入可见光和红外图像路径
visible_path = "../test_images/visible.jpg" # 可见光图片路径
infrared_path = "../test_images/infrared.jpg" # 红外图片路径
if args.mode == 'video':
if args.source == 'file':
# ========== 视频流处理模式 ==========
if not args.video1 or not args.video2:
raise ValueError("视频模式需要指定 --video1 和 --video2 参数")
capture = cv2.VideoCapture(args.video2)
capture2 = cv2.VideoCapture(args.video1)
elif args.source == 'camera':
# ========== 摄像头处理模式 ==========
capture = cv2.VideoCapture(args.camera_id1)
capture2 = cv2.VideoCapture(args.camera_id2)
else:
raise ValueError("必须指定 --source 参数camera 或 file")
# 读取图像
img_visible = cv2.imread(visible_path)
img_infrared = cv2.imread(infrared_path)
# 公共视频处理逻辑
fps = capture.get(cv2.CAP_PROP_FPS) if args.source == 'file' else 30
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(args.output, fourcc, fps, (640, 480))
if img_visible is None or img_infrared is None:
print("Error: 图片加载失败,请检查路径!")
exit()
while True:
ret1, frame_vi = capture.read() # 可见光帧
ret2, frame_ir = capture2.read() # 红外帧
if not ret1 or not ret2:
break
# 转换为灰度图(红外图像处理)
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
# 红外图像转灰度
frame_ir_gray = cv2.cvtColor(frame_ir, cv2.COLOR_BGR2GRAY)
# 执行融合与检测
flag, fusion_result, _ = main(img_visible, img_inf_gray)
# 执行融合与检测
flag, fusion, _ = main(frame_vi, frame_ir_gray)
if flag == 1:
# 显示并保存结果
cv2.imshow("Fusion with Detection", fusion_result)
cv2.imwrite("../output/fusion_result.jpg", fusion_result)
cv2.waitKey(0)
if flag == 1:
cv2.imshow("Fusion with YOLOv8 Detection", fusion)
out.write(fusion)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
capture.release()
capture2.release()
out.release()
cv2.destroyAllWindows()
else:
print("融合失败!")
elif args.mode == 'image':
# ========= 图片处理模式 ==========
if not args.infrared or not args.visible:
raise ValueError("图片模式需要指定 --visible 和 --infrared 参数")
# 读取图像
img_visible = cv2.imread(args.visible)
img_infrared = cv2.imread(args.infrared)
if img_visible is None or img_infrared is None:
print("Error: 图片加载失败,请检查路径!")
exit()
# 转换为灰度图(红外图像处理)
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
# 执行融合与检测
flag, fusion_result, _ = main(img_visible, img_inf_gray)
if flag == 1:
# 显示并保存结果
cv2.imshow("Fusion with Detection", fusion_result)
cv2.imwrite("../output/fusion_result.jpg", fusion_result)
cv2.waitKey(0)
cv2.destroyAllWindows()
else:
print("融合失败!")

View File

Before

Width:  |  Height:  |  Size: 28 KiB

After

Width:  |  Height:  |  Size: 28 KiB

View File

Before

Width:  |  Height:  |  Size: 67 KiB

After

Width:  |  Height:  |  Size: 67 KiB