import numpy as np import cv2 from skimage.metrics import structural_similarity as ssim from skimage.filters import sobel from sklearn.metrics import mutual_info_score # Helper to compute mutual information between two grayscale images def evaluate_mutual_information(img1_gray, img2_gray): hist_2d, _, _ = np.histogram2d(img1_gray.ravel(), img2_gray.ravel(), bins=256) pxy = hist_2d / float(np.sum(hist_2d)) px = np.sum(pxy, axis=1) py = np.sum(pxy, axis=0) px_py = np.outer(px, py) nzs = pxy > 0 mi = np.sum(pxy[nzs] * np.log(pxy[nzs] / px_py[nzs])) return mi # Compute SSIM between two grayscale images def evaluate_registration_ssim(img1_gray, img2_gray): return ssim(img1_gray, img2_gray) # Entropy of grayscale image (fusion quality) def evaluate_fusion_entropy(fusion_img): gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY) hist = cv2.calcHist([gray], [0], None, [256], [0, 256]) hist = hist.ravel() / hist.sum() entropy = -np.sum(hist * np.log2(hist + 1e-9)) return entropy # Edge strength using Sobel (fusion quality) def evaluate_fusion_edges(fusion_img): gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY) edges = sobel(gray.astype(float) / 255.0) return np.mean(edges) # SSIM between fused image and one of the sources def evaluate_fusion_ssim(fusion_img, reference_img): fusion_gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY) ref_gray = cv2.cvtColor(reference_img, cv2.COLOR_RGB2GRAY) return ssim(fusion_gray, ref_gray) # Return all in one place (stub images would be required to test) def summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim): return { "Registration SSIM": evaluate_registration_ssim(img1_gray, img2_gray), "Mutual Information": evaluate_mutual_information(img1_gray, img2_gray), "Fusion Entropy": evaluate_fusion_entropy(fusion_img), "Fusion Edge Strength": evaluate_fusion_edges(fusion_img), "Fusion SSIM (vs Ref)": evaluate_fusion_ssim(fusion_img, ref_img_for_ssim), } # 将所有评价封装成一个高层函数 evaluate_all def evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim, verbose=True): """ 评估图像配准和融合质量的通用函数 :param img1_gray: 可见光灰度图像(原图) :param img2_gray: 红外灰度图像(配准后) :param fusion_img: 融合图像(RGB) :param ref_img_for_ssim: 可见光RGB图,用于对比SSIM :param verbose: 是否打印结果 :return: dict 评价指标结果 """ results = summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim) if verbose: print("图像评价指标如下:") for k, v in results.items(): print(f"{k}: {v:.4f}") return results