343 lines
13 KiB
Python
343 lines
13 KiB
Python
#!/usr/bin/env python
|
||
# -*- coding: utf-8 -*-
|
||
|
||
import time
|
||
import argparse
|
||
|
||
import cv2
|
||
import numpy as np
|
||
|
||
from ultralytics import YOLO
|
||
from skimage.metrics import structural_similarity as ssim
|
||
|
||
# 添加YOLOv8模型初始化
|
||
yolo_model = YOLO("yolov8n.pt") # 可替换为yolov8s/m/l等
|
||
yolo_model.to('cuda') # 启用GPU加速
|
||
|
||
|
||
def calculate_en(img):
|
||
"""计算信息熵(处理灰度图)"""
|
||
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
|
||
hist = hist / hist.sum()
|
||
return -np.sum(hist * np.log2(hist + 1e-10))
|
||
|
||
|
||
def calculate_sf(img):
|
||
"""计算空间频率(处理灰度图)"""
|
||
rf = np.sqrt(np.mean(np.square(np.diff(img, axis=0))))
|
||
cf = np.sqrt(np.mean(np.square(np.diff(img, axis=1))))
|
||
return np.sqrt(rf ** 2 + cf ** 2)
|
||
|
||
|
||
def calculate_mi(img1, img2):
|
||
"""计算互信息(处理灰度图)"""
|
||
hist_2d = np.histogram2d(img1.ravel(), img2.ravel(), 256)[0]
|
||
pxy = hist_2d / hist_2d.sum()
|
||
px = np.sum(pxy, axis=1)
|
||
py = np.sum(pxy, axis=0)
|
||
return np.sum(pxy * np.log2(pxy / (px[:, None] * py[None, :] + 1e-10) + 1e-10))
|
||
|
||
|
||
def calculate_ssim(img1, img2):
|
||
"""计算SSIM(处理灰度图)"""
|
||
return ssim(img1, img2, data_range=255)
|
||
|
||
|
||
# 裁剪线性RGB对比度拉伸:(去掉2%百分位以下的数,去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
|
||
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
|
||
"""
|
||
:param image:
|
||
:param truncated_value:
|
||
:param maxout:
|
||
:param min_out:
|
||
:return:
|
||
"""
|
||
|
||
def gray_process(gray, maxout=maxout, minout=min_out):
|
||
truncated_down = np.percentile(gray, truncated_value)
|
||
truncated_up = np.percentile(gray, 100 - truncated_value)
|
||
gray_new = ((maxout - minout) / (truncated_up - truncated_down)) * gray
|
||
gray_new[gray_new < minout] = minout
|
||
gray_new[gray_new > maxout] = maxout
|
||
return np.uint8(gray_new)
|
||
|
||
(b, g, r) = cv2.split(image)
|
||
b = gray_process(b)
|
||
g = gray_process(g)
|
||
r = gray_process(r)
|
||
result = cv2.merge((b, g, r)) # 合并每一个通道
|
||
return result
|
||
|
||
|
||
# RGB图片配准函数,采用白天的可见光与红外灰度图,计算两者Surf共同特征点,之间的仿射矩阵。
|
||
def Images_matching(img_base, img_target):
|
||
"""
|
||
:param img_base:
|
||
:param img_target:匹配图像
|
||
:return: 返回仿射矩阵
|
||
"""
|
||
start = time.time()
|
||
orb = cv2.ORB_create()
|
||
|
||
# 对可见光图像进行对比度拉伸
|
||
# img_base = truncated_linear_stretch(img_base)
|
||
|
||
img_base = cv2.cvtColor(img_base, cv2.COLOR_BGR2GRAY)
|
||
sift = cv2.SIFT_create()
|
||
# 使用sift算子计算特征点和特征点周围的特征向量
|
||
st1 = time.time()
|
||
kp1, des1 = sift.detectAndCompute(img_base, None) # 1136 1136, 64
|
||
kp2, des2 = sift.detectAndCompute(img_target, None)
|
||
en1 = time.time()
|
||
|
||
# print(en1 - st1, "特征提取")
|
||
|
||
# 进行KNN特征匹配
|
||
# FLANN_INDEX_KDTREE = 0 # 建立FLANN匹配器的参数
|
||
# indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) # 配置索引,密度树的数量为5
|
||
# searchParams = dict(checks=50) # 指定递归次数
|
||
# flann = cv2.FlannBasedMatcher(indexParams, searchParams) # 建立匹配器
|
||
# matches = flann.knnMatch(des1, des2, k=2) # 得出匹配的关键点 list: 1136
|
||
# FLANN_INDEX_KDTREE = 1
|
||
# index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
|
||
# search_params = dict(checks=50)
|
||
# flann = cv2.FlannBasedMatcher(index_params, search_params)
|
||
# matches = flann.knnMatch(des1, des2, k=2)
|
||
|
||
st2 = time.time()
|
||
matcher = cv2.BFMatcher()
|
||
matches = matcher.knnMatch(des1, des2, k=2)
|
||
de2 = time.time()
|
||
# print(de2 - st2, "特征匹配")
|
||
good = []
|
||
# 提取优秀的特征点
|
||
for m, n in matches:
|
||
if m.distance < 0.75 * n.distance: # 如果第一个邻近距离比第二个邻近距离的0.7倍小,则保留
|
||
good.append(m) # 134
|
||
src_pts = np.array([kp1[m.queryIdx].pt for m in good]) # 查询图像的特征描述子索引 # 134, 2
|
||
dst_pts = np.array([kp2[m.trainIdx].pt for m in good]) # 训练(模板)图像的特征描述子索引
|
||
if len(src_pts) <= 4:
|
||
print("Not enough matches are found - {}/{}".format(len(good), 4))
|
||
return 0, None, 0
|
||
else:
|
||
print(len(dst_pts), len(src_pts), "配准坐标点")
|
||
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
|
||
end = time.time()
|
||
times = end - start
|
||
# print("配准时间", times)
|
||
return 1, H[0], len(dst_pts)
|
||
|
||
|
||
def fusions(img_vl, img_inf):
|
||
"""
|
||
:param img_vl: 原图像
|
||
:param img_inf: 红外图像
|
||
:return:
|
||
"""
|
||
img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_BGR2YUV) # 如果输入是BGR,需转换
|
||
# img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_RGB2YUV)
|
||
y, u, v = cv2.split(img_YUV) # 分离通道,获取Y通道
|
||
Yf = y * 0.5 + img_inf * 0.5
|
||
Yf = Yf.astype(np.uint8)
|
||
fusion = cv2.cvtColor(cv2.merge((Yf, u, v)), cv2.COLOR_YUV2RGB)
|
||
return fusion
|
||
|
||
|
||
def removeBlackBorder(gray):
|
||
"""
|
||
移除缝合后的图像的多余黑边
|
||
输入:
|
||
image:三维numpy矩阵,待处理图像
|
||
输出:
|
||
裁剪后的图像
|
||
"""
|
||
threshold = 40 # 阈值
|
||
nrow = gray.shape[0] # 获取图片尺寸
|
||
ncol = gray.shape[1]
|
||
rowc = gray[:, int(1 / 2 * nrow)] # 无法区分黑色区域超过一半的情况
|
||
colc = gray[int(1 / 2 * ncol), :]
|
||
rowflag = np.argwhere(rowc > threshold)
|
||
colflag = np.argwhere(colc > threshold)
|
||
left, bottom, right, top = rowflag[0, 0], colflag[-1, 0], rowflag[-1, 0], colflag[0, 0]
|
||
# cv2.imshow('name', gray[left:right, top:bottom]) # 效果展示
|
||
cv2.waitKey(1)
|
||
return gray[left:right, top:bottom], left, right, top, bottom
|
||
|
||
|
||
def main(matchimg_vi, matchimg_in):
|
||
"""
|
||
:param matchimg_vi: 可见光图像
|
||
:param matchimg_in: 红外图像
|
||
:return: 融合好的图像(带检测结果)
|
||
"""
|
||
try:
|
||
orimg_vi = matchimg_vi
|
||
orimg_in = matchimg_in
|
||
h, w = orimg_vi.shape[:2] # 480 640
|
||
# (3, 3)//获取对应的配准坐标点
|
||
flag, H, dot = Images_matching(matchimg_vi, matchimg_in)
|
||
if flag == 0:
|
||
return 0, None, 0
|
||
else:
|
||
# 配准处理
|
||
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
|
||
matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
|
||
|
||
# 裁剪可见光图像
|
||
cropped_vi = orimg_vi[left:right, top:bottom]
|
||
|
||
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
|
||
fusion = fusions(cropped_vi, matched_ni)
|
||
|
||
# 转换为灰度计算指标
|
||
fusion_gray = cv2.cvtColor(fusion, cv2.COLOR_RGB2GRAY)
|
||
cropped_vi_gray = cv2.cvtColor(cropped_vi, cv2.COLOR_BGR2GRAY)
|
||
matched_ni_gray = matched_ni # 红外图已经是灰度
|
||
|
||
# 计算指标
|
||
en = calculate_en(fusion_gray)
|
||
sf = calculate_sf(fusion_gray)
|
||
mi_visible = calculate_mi(fusion_gray, cropped_vi_gray)
|
||
mi_infrared = calculate_mi(fusion_gray, matched_ni_gray)
|
||
mi_total = mi_visible + mi_infrared
|
||
ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
|
||
ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
|
||
ssim_avg = (ssim_visible + ssim_infrared) / 2
|
||
|
||
# YOLOv8目标检测
|
||
results = yolo_model(fusion) # 输入融合后的图像
|
||
annotated_image = results[0].plot() # 绘制检测框
|
||
|
||
# 返回带检测结果的图像
|
||
return 1, annotated_image, dot, en, sf, mi_total, ssim_avg
|
||
except Exception as e:
|
||
print(f"Error in fusion/detection: {e}")
|
||
return 0, None, 0
|
||
|
||
|
||
def parse_args():
|
||
# 输入可见光和红外图像路径
|
||
visible_image_path = "test/visible.jpg" # 可见光图片路径
|
||
infrared_image_path = "test/infrared.jpg" # 红外图片路径
|
||
# 输入可见光和红外视频路径
|
||
visible_video_path = "test/visible.mp4" # 可见光视频路径
|
||
infrared_video_path = "test/infrared.mp4" # 红外视频路径
|
||
|
||
"""解析命令行参数"""
|
||
parser = argparse.ArgumentParser(description='图像融合与目标检测')
|
||
|
||
parser.add_argument('--mode', type=str, choices=['video', 'image'], default='image',
|
||
help='输入模式:video(视频流) 或 image(静态图片)')
|
||
|
||
# 区分摄像头或视频文件
|
||
parser.add_argument('--source', type=str, choices=['camera', 'file'],
|
||
help='视频输入类型:camera(摄像头)或 file(视频文件)')
|
||
|
||
# 视频模式参数
|
||
parser.add_argument('--video1', type=str, default=visible_video_path,
|
||
help='可见光视频路径(仅在source=file时需要)')
|
||
parser.add_argument('--video2', type=str, default=infrared_video_path,
|
||
help='红外视频路径(仅在source=file时需要)')
|
||
|
||
# 摄像头模式参数
|
||
parser.add_argument('--camera_id1', type=int, default=0,
|
||
help='可见光摄像头ID(仅在source=camera时需要,默认0)')
|
||
parser.add_argument('--camera_id2', type=int, default=1,
|
||
help='红外摄像头ID(仅在source=camera时需要,默认1)')
|
||
parser.add_argument('--output', type=str, default='output.mp4',
|
||
help='输出视频路径(仅在video模式需要)')
|
||
|
||
# 图片模式参数
|
||
parser.add_argument('--visible', type=str, default=visible_image_path,
|
||
help='可见光图片路径(仅在image模式需要)')
|
||
parser.add_argument('--infrared', type=str, default=infrared_image_path,
|
||
help='红外图片路径(仅在image模式需要)')
|
||
|
||
return parser.parse_args()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
time_all = 0
|
||
dots = 0
|
||
i = 0
|
||
args = parse_args()
|
||
|
||
if args.mode == 'video':
|
||
if args.source == 'file':
|
||
# ========== 视频流处理模式 ==========
|
||
if not args.video1 or not args.video2:
|
||
raise ValueError("视频模式需要指定 --video1 和 --video2 参数")
|
||
capture = cv2.VideoCapture(args.video2)
|
||
capture2 = cv2.VideoCapture(args.video1)
|
||
elif args.source == 'camera':
|
||
# ========== 摄像头处理模式 ==========
|
||
capture = cv2.VideoCapture(args.camera_id1)
|
||
capture2 = cv2.VideoCapture(args.camera_id2)
|
||
else:
|
||
raise ValueError("必须指定 --source 参数(camera 或 file)")
|
||
|
||
# 公共视频处理逻辑
|
||
fps = capture.get(cv2.CAP_PROP_FPS) if args.source == 'file' else 30
|
||
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
||
out = cv2.VideoWriter(args.output, fourcc, fps, (640, 480))
|
||
|
||
while True:
|
||
ret1, frame_vi = capture.read() # 可见光帧
|
||
ret2, frame_ir = capture2.read() # 红外帧
|
||
if not ret1 or not ret2:
|
||
break
|
||
|
||
# 红外图像转灰度
|
||
frame_ir_gray = cv2.cvtColor(frame_ir, cv2.COLOR_BGR2GRAY)
|
||
|
||
# 执行融合与检测
|
||
flag, fusion, _ = main(frame_vi, frame_ir_gray)
|
||
|
||
if flag == 1:
|
||
cv2.imshow("Fusion with YOLOv8 Detection", fusion)
|
||
out.write(fusion)
|
||
|
||
if cv2.waitKey(1) == ord('q'):
|
||
break
|
||
|
||
# 释放资源
|
||
capture.release()
|
||
capture2.release()
|
||
out.release()
|
||
cv2.destroyAllWindows()
|
||
|
||
elif args.mode == 'image':
|
||
# ========= 图片处理模式 ==========
|
||
if not args.infrared or not args.visible:
|
||
raise ValueError("图片模式需要指定 --visible 和 --infrared 参数")
|
||
|
||
# 读取图像
|
||
img_visible = cv2.imread(args.visible)
|
||
img_infrared = cv2.imread(args.infrared)
|
||
|
||
if img_visible is None or img_infrared is None:
|
||
print("Error: 图片加载失败,请检查路径!")
|
||
exit()
|
||
|
||
# 转换为灰度图(红外图像处理)
|
||
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
|
||
|
||
# 执行融合与检测
|
||
flag, fusion_result, dot, en, sf, mi, ssim_val = main(img_visible, img_inf_gray)
|
||
|
||
if flag == 1:
|
||
# 展示评价指标
|
||
print("\n======== 融合质量评价 ========")
|
||
print(f"信息熵(EN): {en:.2f}")
|
||
print(f"空间频率(SF): {sf:.2f}")
|
||
print(f"互信息(MI): {mi:.2f}")
|
||
print(f"结构相似性(SSIM): {ssim_val:.4f}")
|
||
|
||
# 显示并保存结果
|
||
cv2.imshow("Fusion with Detection", fusion_result)
|
||
cv2.imwrite("output/fusion_result.jpg", fusion_result)
|
||
cv2.waitKey(0)
|
||
cv2.destroyAllWindows()
|
||
else:
|
||
print("融合失败!")
|