Files
fed-yolo/fed_algo_cs/server_base.py

214 lines
7.9 KiB
Python
Raw Normal View History

2025-10-02 16:26:27 +08:00
import numpy as np
import torch
from torch.utils.data import DataLoader
from utils.fed_util import init_model
from utils.dataset import Dataset
from utils import util
class FedYoloServer(object):
def __init__(self, client_list, model_name, params):
"""
Federated YOLO Server
Args:
client_list: list of connected clients
model_name: YOLO model architecture name
params: dict of hyperparameters (must include 'names')
"""
# Track client updates
self.client_state = {}
self.client_loss = {}
self.client_n_data = {}
self.selected_clients = []
self._batch_size = params.get("val_batch_size", 4)
self.client_list = client_list
self.valset = None
# Federated bookkeeping
self.round = 0
# Total number of classes
self.n_data = 0
# Device
gpu = 0
self._device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu")
# Global model
self._num_classes = len(params["names"])
self.model_name = model_name
self.model = init_model(model_name, self._num_classes)
self.params = params
def load_valset(self, valset):
"""Server loads the validation dataset."""
self.valset = valset
def state_dict(self):
"""Return global model weights."""
return self.model.state_dict()
@torch.no_grad()
def test(self, args) -> dict:
2025-10-02 16:26:27 +08:00
"""
Test the global model on the server's validation set.
2025-10-02 16:26:27 +08:00
Returns:
dict with keys: mAP, mAP50, precision, recall
2025-10-02 16:26:27 +08:00
"""
if self.valset is None:
return {}
loader = DataLoader(
self.valset,
batch_size=self._batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
dev = self._device
# move to device for eval; keep in float32 for stability
self.model.eval().to(dev).float()
2025-10-02 16:26:27 +08:00
iou_v = torch.linspace(0.5, 0.95, 10, device=dev)
2025-10-02 16:26:27 +08:00
n_iou = iou_v.numel()
metrics = []
for samples, targets in loader:
samples = samples.to(dev, non_blocking=True).float() / 255.0
2025-10-02 16:26:27 +08:00
_, _, h, w = samples.shape
scale = torch.tensor((w, h, w, h), device=dev)
2025-10-02 16:26:27 +08:00
outputs = self.model(samples)
outputs = util.non_max_suppression(outputs)
for i, output in enumerate(outputs):
idx = targets["idx"] == i
cls = targets["cls"][idx].to(dev)
box = targets["box"][idx].to(dev)
2025-10-02 16:26:27 +08:00
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=dev)
2025-10-02 16:26:27 +08:00
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0), device=dev), cls.squeeze(-1)))
2025-10-02 16:26:27 +08:00
continue
if cls.shape[0]:
if cls.dim() == 1:
cls = cls.unsqueeze(1)
2025-10-02 16:26:27 +08:00
box_xy = util.wh2xy(box)
if not isinstance(box_xy, torch.Tensor):
box_xy = torch.tensor(box_xy, device=dev)
target = torch.cat((cls, box_xy * scale), dim=1)
2025-10-02 16:26:27 +08:00
metric = util.compute_metric(output[:, :6], target, iou_v)
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
if not metrics:
# move back to CPU before returning
self.model.to("cpu").float()
2025-10-02 16:26:27 +08:00
return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0}
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)]
if len(metrics) and metrics[0].any():
_, _, prec, rec, map50, mean_ap = util.compute_ap(*metrics, names=self.params["names"], plot=False)
else:
prec, rec, map50, mean_ap = 0, 0, 0, 0
# return model to CPU so next agg() stays device-consistent
self.model.to("cpu").float()
2025-10-02 16:26:27 +08:00
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
def select_clients(self, connection_ratio=1.0):
"""
Randomly select a fraction of clients.
Args:
connection_ratio: fraction of clients to select (0 < connection_ratio <= 1)
"""
2025-10-02 16:26:27 +08:00
self.selected_clients = []
self.n_data = 0
for client_id in self.client_list:
# Random selection based on connection ratio
2025-10-02 16:26:27 +08:00
if np.random.rand() <= connection_ratio:
self.selected_clients.append(client_id)
self.n_data += self.client_n_data.get(client_id, 0)
def agg(self):
"""Aggregate client updates (FedAvg) on CPU/FP32, preserving non-float buffers."""
2025-10-02 16:26:27 +08:00
if len(self.selected_clients) == 0 or self.n_data == 0:
return self.model.state_dict(), {}, 0
# Ensure global model is on CPU for safe load later
self.model.to("cpu")
global_state = self.model.state_dict() # may hold CPU or CUDA refs; were on CPU now
2025-10-02 16:26:27 +08:00
avg_loss = {}
total_n = float(self.n_data)
# Prepare accumulators on CPU. For floating tensors, use float32 zeros.
# For non-floating tensors (e.g., BN num_batches_tracked int64), well copy from the first client.
new_state = {}
first_client = None
for cid in self.selected_clients:
if cid in self.client_state:
first_client = cid
break
assert first_client is not None, "No client states available to aggregate."
for k, v in global_state.items():
if v.is_floating_point():
new_state[k] = torch.zeros_like(v.detach().cpu(), dtype=torch.float32)
else:
# For non-float buffers, just copy from the first client (or keep global)
new_state[k] = self.client_state[first_client][k].clone()
# Accumulate floating tensors with weights; keep non-floats as assigned above
for cid in self.selected_clients:
if cid not in self.client_state:
2025-10-02 16:26:27 +08:00
continue
weight = self.client_n_data[cid] / total_n
cst = self.client_state[cid]
for k in new_state.keys():
if new_state[k].is_floating_point():
# cst[k] is CPU; ensure float32 for accumulation
new_state[k].add_(cst[k].to(torch.float32), alpha=weight)
2025-10-02 16:26:27 +08:00
# weighted average losses
for lk, lv in self.client_loss[cid].items():
avg_loss[lk] = avg_loss.get(lk, 0.0) + float(lv) * weight
# Load aggregated state back into the global model (model is on CPU)
with torch.no_grad():
self.model.load_state_dict(new_state, strict=True)
2025-10-02 16:26:27 +08:00
self.round += 1
# Return CPU state_dict (good for broadcasting to clients)
return {k: v.clone() for k, v in self.model.state_dict().items()}, avg_loss, int(self.n_data)
2025-10-02 16:26:27 +08:00
def rec(self, name, state_dict, n_data, loss_dict):
"""
Receive local update from a client.
- Store all floating tensors as CPU float32
- Store non-floating tensors (e.g., BN counters) as CPU in original dtype
2025-10-02 16:26:27 +08:00
"""
self.n_data += n_data
safe_state = {}
with torch.no_grad():
for k, v in state_dict.items():
t = v.detach().cpu()
if t.is_floating_point():
t = t.to(torch.float32)
safe_state[k] = t
self.client_state[name] = safe_state
self.client_n_data[name] = int(n_data)
self.client_loss[name] = {k: float(v) for k, v in loss_dict.items()}
2025-10-02 16:26:27 +08:00
def flush(self):
"""Clear stored client updates."""
self.n_data = 0
self.client_state.clear()
self.client_n_data.clear()
self.client_loss.clear()