2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import os
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import re
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import random
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import matplotlib.pyplot as plt
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from utils.dataset import Dataset
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import numpy as np
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import torch
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from collections import defaultdict
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from typing import Dict, List, Optional, Set, Any
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								import time
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from nets import nn
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								from nets import YOLO
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _image_to_label_path(img_path: str) -> str:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Convert an image path like ".../images/train2017/xxx.jpg"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    to the corresponding label path ".../labels/train2017/xxx.txt".
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Works for POSIX/Windows separators.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # swap "/images/" (or "\images\") to "/labels/"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    label_path = re.sub(r"([/\\])images([/\\])", r"\1labels\2", img_path)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # swap extension to .txt
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    root, _ = os.path.splitext(label_path)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return root + ".txt"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _parse_yolo_label_file(label_path: str) -> Set[int]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Return a set of class_ids found in a YOLO .txt label file.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Empty file -> empty set. Missing file -> empty set.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Robust to blank lines / trailing spaces.
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 22:34:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Args:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        label_path: path to the label file
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 22:34:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Returns:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        set of class IDs (integers) found in the file
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    class_ids: Set[int] = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not os.path.exists(label_path):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return class_ids
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        with open(label_path, "r", encoding="utf-8") as f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for line in f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                line = line.strip()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if not line:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                # YOLO format: cls cx cy w h
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                parts = line.split()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if not parts:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    cls = int(parts[0])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                except ValueError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    # handle weird case like '23.0'
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    try:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        cls = int(float(parts[0]))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    except ValueError:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        # skip malformed line
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                class_ids.add(cls)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    except Exception:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # If the file can't be read for some reason, treat as no labels
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return class_ids
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def _read_list_file(txt_path: str):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """Read one path per line; keep as-is (absolute or relative)."""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not txt_path or not os.path.exists(txt_path):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    with open(txt_path, "r", encoding="utf-8") as f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return [ln.strip() for ln in f if ln.strip()]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def divide_trainset(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    trainset_path: str,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    num_local_class: int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    num_client: int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    min_data: int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    max_data: int,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    mode: str = "overlap",  # "overlap" or "disjoint"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    seed: Optional[int] = None,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								) -> Dict[str, Any]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Build a federated split from a YOLO dataset list file.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Args:
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        trainset_path (str): path to a .txt file containing one image path per line
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                       e.g. /COCO/images/train2017/1111.jpg
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_local_class: how many distinct classes to sample for each client
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_client: number of clients
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        min_data: minimum number of images per client
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        max_data: maximum number of images per client
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        mode: "overlap"  -> images may be shared across clients
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								              "disjoint" -> each image is used by at most one client
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        seed: optional random seed for reproducibility
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Returns::
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> \\
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        trainset_divided = {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "users": ["c_00001", ...],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "user_data": {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                "c_00001": {"filename": [img_path, ...]},
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                ...
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            },
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "num_samples": [len(list_for_user1), len(list_for_user2), ...]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Example::
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> \\
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        dataset = divide_trainset(
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        trainset_path="/COCO/train2017.txt",
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_local_class=3,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_client=5,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        min_data=10,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        max_data=20,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        mode="disjoint",   # or "overlap"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        seed=42
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        )
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> print(dataset["users"])            # ['c_00001', ..., 'c_00005']
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> print(dataset["num_samples"])      # e.g. [10, 12, 18, 9, 15]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    >>> print(dataset["user_data"]["c_00001"]["filename"][:3])
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if seed is not None:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        random.seed(seed)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # ---- Basic validations (defensive programming) ----
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if num_client <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError("num_client must be > 0")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if num_local_class <= 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError("num_local_class must be > 0")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if min_data < 0 or max_data < 0:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError("min_data/max_data must be >= 0")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if max_data < min_data:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError("max_data must be >= min_data")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if mode not in {"overlap", "disjoint"}:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError('mode must be "overlap" or "disjoint"')
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # ---- 1) Read image list ----
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    with open(trainset_path, "r", encoding="utf-8") as f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        all_images_raw = [ln.strip() for ln in f if ln.strip()]
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Normalize and deduplicate image paths (safe)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    all_images: List[str] = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    seen = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for p in all_images_raw:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
										
									
								 | 
							
							
								        # keep exact string (don’t join with cwd), just normalize slashes
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        norm = os.path.normpath(p)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if norm not in seen:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            seen.add(norm)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            all_images.append(norm)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # ---- 2) Build mappings from labels ----
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    class_to_images: Dict[int, Set[str]] = defaultdict(set)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    image_to_classes: Dict[str, Set[int]] = {}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    missing_label_files = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    empty_label_files = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    parsed_images = 0
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for img in all_images:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        lbl = _image_to_label_path(img)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not os.path.exists(lbl):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            # Missing labels: skip image (no class info)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            missing_label_files += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        classes = _parse_yolo_label_file(lbl)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if not classes:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            # No objects in this image -> skip (no class bucket)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            empty_label_files += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            continue
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        image_to_classes[img] = classes
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for c in classes:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            class_to_images[c].add(img)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        parsed_images += 1
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not class_to_images:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # No usable images found
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return {
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "users": [f"c_{i + 1:05d}" for i in range(num_client)],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "user_data": {f"c_{i + 1:05d}": {"filename": []} for i in range(num_client)},
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            "num_samples": [0 for _ in range(num_client)],
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        }
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    all_classes: List[int] = sorted(class_to_images.keys())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # Available pool for disjoint mode (only images with labels)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    available_images: Set[str] = set(image_to_classes.keys())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # ---- 3) Allocate to clients ----
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    result = {"users": [], "user_data": {}, "num_samples": []}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    for cid in range(num_client):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        user_id = f"c_{cid + 1:05d}"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        result["users"].append(user_id)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Pick the classes for this client (sample without replacement from global class set)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        k = min(num_local_class, len(all_classes))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        chosen_classes = random.sample(all_classes, k) if k > 0 else []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Decide how many samples for this client
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        need = min_data if min_data == max_data else random.randint(min_data, max_data)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Build the candidate pool for this client
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if mode == "overlap":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            pool_set: Set[str] = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for c in chosen_classes:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                pool_set.update(class_to_images[c])
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:  # "disjoint": restrict to currently available images
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            pool_set = set()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for c in chosen_classes:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                # intersect with available images
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                pool_set.update(class_to_images[c] & available_images)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Deduplicate and sample
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        pool_list = list(pool_set)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if len(pool_list) <= need:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            chosen_imgs = pool_list[:]  # take all (can be fewer than need)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            chosen_imgs = random.sample(pool_list, need)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # Record for the user
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        result["user_data"][user_id] = {"filename": chosen_imgs}
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        result["num_samples"].append(len(chosen_imgs))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        # If disjoint, remove selected images from availability everywhere
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        if mode == "disjoint" and chosen_imgs:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            for img in chosen_imgs:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                if img in available_images:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    available_images.remove(img)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                # remove from every class bucket this image belongs to
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                for c in image_to_classes.get(img, []):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                    if img in class_to_images[c]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								                        class_to_images[c].remove(img)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            # Optional: prune empty classes from all_classes to speed up later loops
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            # (keep list stable; just skip empties naturally)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # (Optional) You can print some quick diagnostics if helpful:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # print(f"[INFO] Parsed images with labels: {parsed_images}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # print(f"[INFO] Missing label files: {missing_label_files}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # print(f"[INFO] Empty label files: {empty_label_files}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return result
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def init_model(model_name, num_classes) -> YOLO:
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Initialize the model for a specific learning task
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Args:
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model_name: Name of the model
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        num_classes: Number of classes
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Returns:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model: YOLO model instance
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-02 16:26:27 +08:00
										 
									 
								 
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    model = None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if model_name == "yolo_v11_n":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model = nn.yolo_v11_n(num_classes=num_classes)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif model_name == "yolo_v11_s":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model = nn.yolo_v11_s(num_classes=num_classes)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif model_name == "yolo_v11_m":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model = nn.yolo_v11_m(num_classes=num_classes)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif model_name == "yolo_v11_l":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model = nn.yolo_v11_l(num_classes=num_classes)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    elif model_name == "yolo_v11_x":
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        model = nn.yolo_v11_x(num_classes=num_classes)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    else:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        raise ValueError("Model {} is not supported.".format(model_name))
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return model
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-23 13:06:38 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def build_valset_if_available(cfg, params, args=None, val_name: str = "val2017") -> Optional[Dataset]:
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Try to build a validation Dataset.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    - If cfg['val_txt'] exists, use it.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    - Else if <dataset_path>/val.txt exists, use it.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    - Else return None (testing will be skipped).
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Args:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        cfg: config dict
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        params: params dict for Dataset
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-23 13:06:38 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        args: optional args object (for input_size)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        val_name: name of the validation set folder with no prefix (default: "val2017")
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Returns:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        Dataset or None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    input_size = args.input_size if args and hasattr(args, "input_size") else 640
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    val_txt = cfg.get("val_txt", "")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not val_txt:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        ds_root = cfg.get("dataset_path", "")
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-23 13:06:38 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        guess = os.path.join(ds_root, f"{val_name}.txt") if ds_root else ""
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        val_txt = guess if os.path.exists(guess) else ""
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-23 13:06:38 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    # val_files = _read_list_file(val_txt)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    filenames = []
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    with open(val_txt, "r", encoding="utf-8") as f:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        for filename in f.readlines():
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            filename = os.path.basename(filename.rstrip())
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								            filenames.append(f"{ds_root}/images/{val_name}/" + filename)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if not filenames:
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        import warnings
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        warnings.warn("No validation dataset found.")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        return None
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return Dataset(
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-23 13:06:38 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        filenames=filenames,
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-19 21:29:58 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        input_size=input_size,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        params=params,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        augment=True,
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    )
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def seed_everything(seed: int):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    np.random.seed(seed)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    torch.manual_seed(seed)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    random.seed(seed)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def plot_curves(save_dir, hist, savename="fed_yolo_curves.png"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Plot mAP50-95, mAP50, precision, recall, and (optional) summed train loss per round.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Args:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        save_dir: directory to save the plot
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        hist: history dict with keys "mAP", "mAP50", "precision", "recall", "train_loss"
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        savename: output filename
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    os.makedirs(save_dir, exist_ok=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    rounds = np.arange(1, len(hist["mAP"]) + 1)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plt.figure()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if hist["mAP"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        plt.plot(rounds, hist["mAP"], label="mAP50-95")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if hist["mAP50"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        plt.plot(rounds, hist["mAP50"], label="mAP50")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if hist["precision"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        plt.plot(rounds, hist["precision"], label="precision")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if hist["recall"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        plt.plot(rounds, hist["recall"], label="recall")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    if hist["train_loss"]:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        plt.plot(rounds, hist["train_loss"], label="train_loss (sum of components)")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plt.xlabel("Global Round")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plt.ylabel("Metric")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plt.title("Federated YOLO - Server Metrics")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plt.legend()
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    out_png = os.path.join(save_dir, savename)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    plt.savefig(out_png, dpi=150, bbox_inches="tight")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    print(f"[plot] saved: {out_png}")
							 | 
						
					
						
							
								
									
										
										
										
											2025-10-31 13:14:29 +08:00
										 
									 
								 
							 | 
							
								
									
										
									
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								def prepare_result_dir(base_root: str = "results"):
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Prepare result directories for saving outputs.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Args:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        base_root (str): base directory for results.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    Returns:
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								        (res_dir, weights_dir) (str,str): Path to result directory and weights directory.
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    """
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    os.makedirs(base_root, exist_ok=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    timestamp = time.strftime("%Y%m%d_%H%M%S")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    res_dir = os.path.join(base_root, f"result_{timestamp}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    weights_dir = os.path.join(res_dir, f"weight_{timestamp}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    os.makedirs(res_dir, exist_ok=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    os.makedirs(weights_dir, exist_ok=True)
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    print(f"[INFO] Saving results to: {res_dir}")
							 | 
						
					
						
							| 
								
							 | 
							
								
							 | 
							
								
							 | 
							
								
									
								 | 
							
							
								    return res_dir, weights_dir
							 |