240 lines
8.0 KiB
Python
240 lines
8.0 KiB
Python
![]() |
#!/usr/bin/env python3
|
||
|
import os
|
||
|
import json
|
||
|
import yaml
|
||
|
import time
|
||
|
import random
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
from utils.dataset import Dataset
|
||
|
from fed_algo_cs.client_base import FedYoloClient
|
||
|
from fed_algo_cs.server_base import FedYoloServer
|
||
|
from utils.args import args_parser # your args parser
|
||
|
from utils.fed_util import divide_trainset # divide_trainset is yours
|
||
|
|
||
|
|
||
|
def _read_list_file(txt_path: str):
|
||
|
"""Read one path per line; keep as-is (absolute or relative)."""
|
||
|
if not txt_path or not os.path.exists(txt_path):
|
||
|
return []
|
||
|
with open(txt_path, "r", encoding="utf-8") as f:
|
||
|
return [ln.strip() for ln in f if ln.strip()]
|
||
|
|
||
|
|
||
|
def _build_valset_if_available(cfg, params):
|
||
|
"""
|
||
|
Try to build a validation Dataset.
|
||
|
- If cfg['val_txt'] exists, use it.
|
||
|
- Else if <dataset_path>/val.txt exists, use it.
|
||
|
- Else return None (testing will be skipped).
|
||
|
Args:
|
||
|
cfg: config dict
|
||
|
params: params dict for Dataset
|
||
|
Returns:
|
||
|
Dataset or None
|
||
|
"""
|
||
|
input_size = int(cfg.get("input_size", 640))
|
||
|
val_txt = cfg.get("val_txt", "")
|
||
|
if not val_txt:
|
||
|
ds_root = cfg.get("dataset_path", "")
|
||
|
guess = os.path.join(ds_root, "val.txt") if ds_root else ""
|
||
|
val_txt = guess if os.path.exists(guess) else ""
|
||
|
|
||
|
val_files = _read_list_file(val_txt)
|
||
|
if not val_files:
|
||
|
return None
|
||
|
|
||
|
return Dataset(
|
||
|
filenames=val_files,
|
||
|
input_size=input_size,
|
||
|
params=params,
|
||
|
augment=True,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _seed_everything(seed: int):
|
||
|
np.random.seed(seed)
|
||
|
torch.manual_seed(seed)
|
||
|
random.seed(seed)
|
||
|
|
||
|
|
||
|
def _plot_curves(save_dir, hist):
|
||
|
"""
|
||
|
Plot mAP50-95, mAP50, precision, recall, and (optional) summed train loss per round.
|
||
|
"""
|
||
|
os.makedirs(save_dir, exist_ok=True)
|
||
|
rounds = np.arange(1, len(hist["mAP"]) + 1)
|
||
|
|
||
|
plt.figure()
|
||
|
if hist["mAP"]:
|
||
|
plt.plot(rounds, hist["mAP"], label="mAP50-95")
|
||
|
if hist["mAP50"]:
|
||
|
plt.plot(rounds, hist["mAP50"], label="mAP50")
|
||
|
if hist["precision"]:
|
||
|
plt.plot(rounds, hist["precision"], label="precision")
|
||
|
if hist["recall"]:
|
||
|
plt.plot(rounds, hist["recall"], label="recall")
|
||
|
if hist["train_loss"]:
|
||
|
plt.plot(rounds, hist["train_loss"], label="train_loss (sum of components)")
|
||
|
plt.xlabel("Global Round")
|
||
|
plt.ylabel("Metric")
|
||
|
plt.title("Federated YOLO - Server Metrics")
|
||
|
plt.legend()
|
||
|
out_png = os.path.join(save_dir, "fed_yolo_curves.png")
|
||
|
plt.savefig(out_png, dpi=150, bbox_inches="tight")
|
||
|
print(f"[plot] saved: {out_png}")
|
||
|
|
||
|
|
||
|
def fed_run():
|
||
|
"""
|
||
|
Main FL process:
|
||
|
- Initialize clients & server
|
||
|
- For each round: sequential local training -> record -> select -> aggregate
|
||
|
- Test & flush
|
||
|
- Record & save results, plot curves
|
||
|
"""
|
||
|
args_cli = args_parser()
|
||
|
with open(args_cli.config, "r", encoding="utf-8") as f:
|
||
|
cfg = yaml.safe_load(f)
|
||
|
|
||
|
# --- params / config normalization ---
|
||
|
# For convenience we pass the same `params` dict used by Dataset/model/loss.
|
||
|
# Here we re-use the top-level cfg directly as params.
|
||
|
params = dict(cfg)
|
||
|
if "names" in cfg and isinstance(cfg["names"], dict):
|
||
|
# Convert {0: 'uav', 1: 'car', ...} to list if you prefer list
|
||
|
# but we can leave dict; your utils appear to accept dict
|
||
|
pass
|
||
|
|
||
|
# seeds
|
||
|
_seed_everything(int(cfg.get("i_seed", 0)))
|
||
|
|
||
|
# --- split clients' train data from a global train list ---
|
||
|
# Expect either cfg["train_txt"] or <dataset_path>/train.txt
|
||
|
train_txt = cfg.get("train_txt", "")
|
||
|
if not train_txt:
|
||
|
ds_root = cfg.get("dataset_path", "")
|
||
|
guess = os.path.join(ds_root, "train.txt") if ds_root else ""
|
||
|
train_txt = guess
|
||
|
|
||
|
if not train_txt or not os.path.exists(train_txt):
|
||
|
raise FileNotFoundError(
|
||
|
f"train.txt not found. Provide --config with 'train_txt' or ensure '{train_txt}' exists."
|
||
|
)
|
||
|
|
||
|
split = divide_trainset(
|
||
|
trainset_path=train_txt,
|
||
|
num_local_class=int(cfg.get("num_local_class", 1)),
|
||
|
num_client=int(cfg.get("num_client", 64)),
|
||
|
min_data=int(cfg.get("min_data", 100)),
|
||
|
max_data=int(cfg.get("max_data", 100)),
|
||
|
mode=str(cfg.get("partition_mode", "disjoint")), # "overlap" or "disjoint"
|
||
|
seed=int(cfg.get("i_seed", 0)),
|
||
|
)
|
||
|
|
||
|
users = split["users"]
|
||
|
user_data = split["user_data"] # mapping: id -> {"filename": [...]}
|
||
|
|
||
|
# --- build clients ---
|
||
|
model_name = cfg.get("model_name", "yolo_v11_n")
|
||
|
clients = {}
|
||
|
for uid in users:
|
||
|
c = FedYoloClient(name=uid, model_name=model_name, params=params)
|
||
|
c.load_trainset(user_data[uid]["filename"])
|
||
|
clients[uid] = c
|
||
|
|
||
|
# --- build server & optional validation set ---
|
||
|
server = FedYoloServer(client_list=users, model_name=model_name, params=params)
|
||
|
valset = _build_valset_if_available(cfg, params)
|
||
|
# valset is a Dataset class, not data loader
|
||
|
if valset is not None:
|
||
|
server.load_valset(valset)
|
||
|
|
||
|
# --- push initial global weights ---
|
||
|
global_state = server.state_dict()
|
||
|
|
||
|
# --- args object for client.train() ---
|
||
|
# args_train = _make_args_for_client(cfg, args_cli)
|
||
|
|
||
|
# --- history recorder ---
|
||
|
history = {
|
||
|
"mAP": [],
|
||
|
"mAP50": [],
|
||
|
"precision": [],
|
||
|
"recall": [],
|
||
|
"train_loss": [], # scalar sum of client-weighted dict losses
|
||
|
"round_time_sec": [],
|
||
|
}
|
||
|
|
||
|
# --- main FL loop ---
|
||
|
num_round = int(cfg.get("num_round", 50))
|
||
|
connection_ratio = float(cfg.get("connection_ratio", 1.0)) # e.g., 1.0 = all clients
|
||
|
res_root = cfg.get("res_root", "results")
|
||
|
os.makedirs(res_root, exist_ok=True)
|
||
|
|
||
|
for rnd in tqdm(range(num_round), desc="main federal loop round"):
|
||
|
t0 = time.time()
|
||
|
|
||
|
# Local training (sequential over all users)
|
||
|
for uid in tqdm(users, desc=f"Round {rnd + 1} local training", leave=False):
|
||
|
client = clients[uid] # FedYoloClient instance
|
||
|
client.update(global_state) # load global weights
|
||
|
state_dict, n_data, loss_dict = client.train(args_cli) # local training
|
||
|
server.rec(uid, state_dict, n_data, loss_dict)
|
||
|
|
||
|
# Select a fraction for aggregation (FedAvg subset if desired)
|
||
|
server.select_clients(connection_ratio=connection_ratio)
|
||
|
|
||
|
# Aggregate
|
||
|
global_state, avg_loss_dict, _ = server.agg()
|
||
|
|
||
|
# Compute a scalar train loss for plotting (sum of components)
|
||
|
scalar_train_loss = float(sum(avg_loss_dict.values())) if avg_loss_dict else 0.0
|
||
|
|
||
|
# Test (if valset provided)
|
||
|
test_metrics = server.test(args_cli) if server.valset is not None else {}
|
||
|
mAP = float(test_metrics.get("mAP", 0.0))
|
||
|
mAP50 = float(test_metrics.get("mAP50", 0.0))
|
||
|
precision = float(test_metrics.get("precision", 0.0))
|
||
|
recall = float(test_metrics.get("recall", 0.0))
|
||
|
|
||
|
# Flush per-round client caches
|
||
|
server.flush()
|
||
|
|
||
|
# Record & log
|
||
|
history["mAP"].append(mAP)
|
||
|
history["mAP50"].append(mAP50)
|
||
|
history["precision"].append(precision)
|
||
|
history["recall"].append(recall)
|
||
|
history["train_loss"].append(scalar_train_loss)
|
||
|
history["round_time_sec"].append(time.time() - t0)
|
||
|
|
||
|
print(
|
||
|
f"[round {rnd + 1:04d}] "
|
||
|
f"loss={scalar_train_loss:.4f} mAP50-95={mAP:.4f} mAP50={mAP50:.4f} "
|
||
|
f"P={precision:.4f} R={recall:.4f}"
|
||
|
)
|
||
|
|
||
|
# Save running JSON (resumable logs)
|
||
|
save_name = (
|
||
|
f"[{cfg.get('fed_algo', 'FedAvg')},{cfg.get('model_name', 'yolo')},"
|
||
|
f"{cfg.get('num_local_epoch', cfg.get('client', {}).get('num_local_epoch', 1))},"
|
||
|
f"{cfg.get('num_local_class', 2)},"
|
||
|
f"{cfg.get('i_seed', 0)}]"
|
||
|
)
|
||
|
out_json = os.path.join(res_root, save_name + ".json")
|
||
|
with open(out_json, "w", encoding="utf-8") as f:
|
||
|
json.dump(history, f, indent=2)
|
||
|
|
||
|
# --- final plot ---
|
||
|
_plot_curves(res_root, history)
|
||
|
print("[done] training complete.")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
fed_run()
|