Fedavg and YOLOv11 training

This commit is contained in:
TY1667
2025-10-02 16:26:27 +08:00
parent a60e002733
commit 1ae76d0aed
10 changed files with 2749 additions and 0 deletions

233
fed_algo_cs/client_base.py Normal file
View File

@@ -0,0 +1,233 @@
import numpy as np
import torch
from torch import nn
from torch.utils import data
from torch.amp.autocast_mode import autocast
from utils.fed_util import init_model
from utils import util
from utils.dataset import Dataset
from typing import cast
class FedYoloClient(object):
def __init__(self, name, model_name, params):
"""
Initialize the client k for federated learning
Args:
:param name: Name of the client k
:param model_name: Name of the model
:param params: config file including the hyperparameters for local training
- batch_size: Local training batch size in the client k
- num_workers: Number of data loader workers
- min_lr: Minimum learning rate
- max_lr: Maximum learning rate
- momentum: Momentum for local training
- weight_decay: Weight decay for local training
"""
self.params = params
# initialize the metadata in local client k
self.target_ip = "127.0.0.3"
self.port = 9999
self.name = name
# initialize the parameters in local client k
self._batch_size = self.params["local_batch_size"]
self._min_lr = self.params["min_lr"]
self._max_lr = self.params["max_lr"]
self._momentum = self.params["momentum"]
self.num_workers = self.params["num_workers"]
self.loss_record = []
# train set length
self.n_data = 0
# initialize the local training and testing dataset
self.train_dataset = None
self.val_dataset = None
# initialize the local model
self._num_classes = len(self.params["names"])
self._weight_decay = self.params["weight_decay"]
self.model_name = model_name
self.model = init_model(model_name, self._num_classes)
model_parameters = filter(lambda p: p.requires_grad, self.model.parameters())
self.parameter_number = sum([np.prod(p.size()) for p in model_parameters])
# GPU
self._device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def load_trainset(self, train_dataset: list[str]):
"""
Load the local training dataset
Args:
:param train_dataset: Training dataset
"""
self.train_dataset = train_dataset
self.n_data = len(self.train_dataset)
def update(self, Global_model_state_dict):
"""
Update the local model with the global model parameters
Args:
:param Global_model_state_dict: State dictionary of the global model
"""
if not hasattr(self, "model") or self.model is None:
self.model = init_model(self.model_name, self._num_classes)
# load the global model parameters
self.model.load_state_dict(Global_model_state_dict, strict=True)
def train(self, args):
"""
Train the local model
Args:
:param args: Command line arguments
- local_rank: Local rank for distributed training
- world_size: World size for distributed training
- distributed: Whether to use distributed training
- input_size: Input size for the model
Returns:
:return: Local updated model, number of local data points, training loss
"""
if args.distributed:
torch.cuda.set_device(device=args.local_rank)
torch.distributed.init_process_group(backend="nccl", init_method="env://")
# print(f"Client {self.name} - distributed training on {world_size} GPUs, local rank: {local_rank}")
# self._device = torch.device("cuda", local_rank)
if args.local_rank == 0:
pass
# if not os.path.exists("weights"):
# os.makedirs("weights")
util.setup_seed()
util.setup_multi_processes()
# model
# init model have been done in __init__()
self.model.to(self._device)
# Optimizer
accumulate = max(round(64 / (self._batch_size * args.world_size)), 1)
self._weight_decay = self._batch_size * args.world_size * accumulate / 64
optimizer = torch.optim.SGD(
util.set_params(self.model, self._weight_decay),
lr=self._min_lr,
momentum=self._momentum,
nesterov=True,
)
# EMA
ema = util.EMA(self.model) if args.local_rank == 0 else None
data_set = Dataset(
filenames=self.train_dataset,
input_size=args.input_size,
params=self.params,
augment=True,
)
if args.distributed:
train_sampler = data.DistributedSampler(
data_set, num_replicas=args.world_size, rank=args.local_rank, shuffle=True
)
else:
train_sampler = None
loader = data.DataLoader(
data_set,
batch_size=self._batch_size,
shuffle=train_sampler is None,
sampler=train_sampler,
num_workers=self.num_workers,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
# Scheduler
num_steps = max(1, len(loader))
# print(len(loader))
scheduler = util.LinearLR(args=args, params=self.params, num_steps=num_steps)
# DDP mode
if args.distributed:
self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model)
self.model = nn.parallel.DistributedDataParallel(
module=self.model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=False,
)
amp_scale = torch.amp.grad_scaler.GradScaler(enabled=True)
criterion = util.ComputeLoss(self.model, self.params)
optimizer.zero_grad(set_to_none=True)
for epoch in range(args.epochs):
self.model.train()
# when distributed, set epoch for shuffling
if args.distributed and train_sampler is not None:
train_sampler.set_epoch(epoch)
if args.epochs - epoch == 10:
# disable mosaic augmentation in the last 10 epochs
ds = cast(Dataset, loader.dataset)
ds.mosaic = False
avg_box_loss = util.AverageMeter()
avg_cls_loss = util.AverageMeter()
avg_dfl_loss = util.AverageMeter()
for i, (samples, targets) in enumerate(loader):
global_step = i + num_steps * epoch
scheduler.step(step=global_step, optimizer=optimizer)
samples = samples.cuda(non_blocking=True).float() / 255.0
# Forward
with autocast("cuda", enabled=True):
outputs = self.model(samples)
box_loss, cls_loss, dfl_loss = criterion(outputs, targets)
# meters (use the *unscaled* values)
bs = samples.size(0)
avg_box_loss.update(box_loss.item(), bs)
avg_cls_loss.update(cls_loss.item(), bs)
avg_dfl_loss.update(dfl_loss.item(), bs)
# scale losses by batch/world if your loss is averaged internally per-sample/device
box_loss = box_loss * self._batch_size * args.world_size
cls_loss = cls_loss * self._batch_size * args.world_size
dfl_loss = dfl_loss * self._batch_size * args.world_size
total_loss = box_loss + cls_loss + dfl_loss
# Backward
amp_scale.scale(total_loss).backward()
# Optimize
if (i + 1) % accumulate == 0:
amp_scale.step(optimizer)
amp_scale.update()
optimizer.zero_grad(set_to_none=True)
if ema:
ema.update(self.model)
# torch.cuda.synchronize()
# clean
if args.distributed:
torch.distributed.destroy_process_group()
torch.cuda.empty_cache()
return (
self.model.state_dict(),
self.n_data,
{"box_loss": avg_box_loss.avg, "cls_loss": avg_cls_loss.avg, "dfl_loss": avg_dfl_loss.avg},
)

178
fed_algo_cs/server_base.py Normal file
View File

@@ -0,0 +1,178 @@
import numpy as np
import torch
from torch.utils.data import DataLoader
from utils.fed_util import init_model
from utils.dataset import Dataset
from utils import util
class FedYoloServer(object):
def __init__(self, client_list, model_name, params):
"""
Federated YOLO Server
Args:
client_list: list of connected clients
model_name: YOLO model architecture name
params: dict of hyperparameters (must include 'names')
"""
# Track client updates
self.client_state = {}
self.client_loss = {}
self.client_n_data = {}
self.selected_clients = []
self._batch_size = params.get("val_batch_size", 4)
self.client_list = client_list
self.valset = None
# Federated bookkeeping
self.round = 0
# Total number of classes
self.n_data = 0
# Device
gpu = 0
self._device = torch.device(f"cuda:{gpu}" if torch.cuda.is_available() else "cpu")
# Global model
self._num_classes = len(params["names"])
self.model_name = model_name
self.model = init_model(model_name, self._num_classes)
self.params = params
def load_valset(self, valset):
"""Server loads the validation dataset."""
self.valset = valset
def state_dict(self):
"""Return global model weights."""
return self.model.state_dict()
@torch.no_grad()
def test(self, args):
"""
Evaluate global model on validation set using YOLO metrics (mAP, precision, recall).
Returns:
dict with {"mAP": ..., "mAP50": ..., "precision": ..., "recall": ...}
"""
if self.valset is None:
return {}
loader = DataLoader(
self.valset,
batch_size=self._batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
collate_fn=Dataset.collate_fn,
)
self.model.to(self._device).eval().half()
iou_v = torch.linspace(0.5, 0.95, 10).to(self._device) # IoU thresholds
n_iou = iou_v.numel()
metrics = []
for samples, targets in loader:
samples = samples.to(self._device).half() / 255.0
_, _, h, w = samples.shape
scale = torch.tensor((w, h, w, h)).to(self._device)
outputs = self.model(samples)
outputs = util.non_max_suppression(outputs)
for i, output in enumerate(outputs):
idx = targets["idx"] == i
cls = targets["cls"][idx].to(self._device)
box = targets["box"][idx].to(self._device)
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=self._device)
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0), device=self._device), cls.squeeze(-1)))
continue
if cls.shape[0]:
cls_tensor = cls if isinstance(cls, torch.Tensor) else torch.tensor(cls, device=self._device)
if cls_tensor.dim() == 1:
cls_tensor = cls_tensor.unsqueeze(1)
box_xy = util.wh2xy(box)
if not isinstance(box_xy, torch.Tensor):
box_xy = torch.tensor(box_xy, device=self._device)
target = torch.cat((cls_tensor, box_xy * scale), dim=1)
metric = util.compute_metric(output[:, :6], target, iou_v)
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
# Compute metrics
if not metrics:
return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0}
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)]
if len(metrics) and metrics[0].any():
_, _, prec, rec, map50, mean_ap = util.compute_ap(*metrics, names=self.params["names"], plot=False)
else:
prec, rec, map50, mean_ap = 0, 0, 0, 0
# Back to float32 for further training
self.model.float()
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
def select_clients(self, connection_ratio=1.0):
"""Randomly select a fraction of clients."""
self.selected_clients = []
self.n_data = 0
for client_id in self.client_list:
if np.random.rand() <= connection_ratio:
self.selected_clients.append(client_id)
self.n_data += self.client_n_data.get(client_id, 0)
def agg(self):
"""Aggregate client updates (FedAvg)."""
if len(self.selected_clients) == 0 or self.n_data == 0:
return self.model.state_dict(), {}, 0
model = init_model(self.model_name, self._num_classes)
model_state = model.state_dict()
avg_loss = {}
for i, name in enumerate(self.selected_clients):
if name not in self.client_state:
continue
weight = self.client_n_data[name] / self.n_data
for key in model_state.keys():
if i == 0:
model_state[key] = self.client_state[name][key] * weight
else:
model_state[key] += self.client_state[name][key] * weight
# Weighted average losses
for k, v in self.client_loss[name].items():
avg_loss[k] = avg_loss.get(k, 0.0) + v * weight
self.model.load_state_dict(model_state, strict=True)
self.round += 1
return model_state, avg_loss, self.n_data
def rec(self, name, state_dict, n_data, loss_dict):
"""
Receive local update from a client.
Args:
name: client ID
state_dict: state dictionary of the local model
n_data: number of data samples used in local training
loss_dict: dict of losses from local training
"""
self.n_data += n_data
self.client_state[name] = {k: v.cpu() for k, v in state_dict.items()}
self.client_n_data[name] = n_data
self.client_loss[name] = loss_dict
def flush(self):
"""Clear stored client updates."""
self.n_data = 0
self.client_state.clear()
self.client_n_data.clear()
self.client_loss.clear()