Fedavg and YOLOv11 training

This commit is contained in:
TY1667
2025-10-02 16:26:27 +08:00
parent a60e002733
commit 1ae76d0aed
10 changed files with 2749 additions and 0 deletions

18
utils/args.py Normal file
View File

@@ -0,0 +1,18 @@
import argparse
import os
def args_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=10, help="number of rounds of local training")
parser.add_argument("--input_size", type=int, default=640, help="image input size")
parser.add_argument("--config", type=str, default="./config/uav_cfg.yaml", help="Path to YAML config")
args = parser.parse_args()
args.local_rank = int(os.getenv("LOCAL_RANK", 0))
args.world_size = int(os.getenv("WORLD_SIZE", 1))
args.distributed = int(os.getenv("WORLD_SIZE", 1)) > 1
return args

478
utils/dataset.py Normal file
View File

@@ -0,0 +1,478 @@
import math
import os
import random
import cv2
import numpy
import torch
from PIL import Image
from torch.utils import data
FORMATS = "bmp", "dng", "jpeg", "jpg", "mpo", "png", "tif", "tiff", "webp", "JPEG", "JPG", "PNG", "TIFF"
class Dataset(data.Dataset):
params: dict
mosaic: bool
augment: bool
input_size: int
def __init__(self, filenames, input_size: int, params: dict, augment: bool):
self.params = params
self.mosaic = augment
self.augment = augment
self.input_size = input_size
# Read labels
labels = self.load_label(filenames)
self.labels = list(labels.values())
self.filenames = list(labels.keys()) # update
self.n = len(self.filenames) # number of samples
self.indices = range(self.n)
# Albumentations (optional, only used if package is installed)
self.albumentations = Albumentations()
def __getitem__(self, index):
index = self.indices[index]
if self.mosaic and random.random() < self.params["mosaic"]:
# Load MOSAIC
image, label = self.load_mosaic(index, self.params)
# MixUp augmentation
if random.random() < self.params["mix_up"]:
index = random.choice(self.indices)
mix_image1, mix_label1 = image, label
mix_image2, mix_label2 = self.load_mosaic(index, self.params)
image, label = mix_up(mix_image1, mix_label1, mix_image2, mix_label2)
else:
# Load image
image, shape = self.load_image(index)
if image is None:
raise ValueError(f"Failed to load image at index {index}: {self.filenames[index]}")
h, w = image.shape[:2]
# Resize
image, ratio, pad = resize(image, self.input_size, self.augment)
label = self.labels[index].copy()
if label.size:
label[:, 1:] = wh2xy(label[:, 1:], ratio[0] * w, ratio[1] * h, int(pad[0]), int(pad[1]))
if self.augment:
image, label = random_perspective(image, label, self.params)
nl = len(label) # number of labels
h, w = image.shape[:2]
cls = label[:, 0:1]
box = label[:, 1:5]
box = xy2wh(box, w, h)
if self.augment:
# Albumentations
image, box, cls = self.albumentations(image, box, cls)
nl = len(box) # update after albumentations
# HSV color-space
augment_hsv(image, self.params)
# Flip up-down
if random.random() < self.params["flip_ud"]:
image = numpy.flipud(image)
if nl:
box[:, 1] = 1 - box[:, 1]
# Flip left-right
if random.random() < self.params["flip_lr"]:
image = numpy.fliplr(image)
if nl:
box[:, 0] = 1 - box[:, 0]
# target_cls = torch.zeros((nl, 1))
# target_box = torch.zeros((nl, 4))
# if nl:
# target_cls = torch.from_numpy(cls)
# target_box = torch.from_numpy(box)
# fix [cls, box] empty bug. e.g. [0,1] is illegal in DataLoader collate_fn cat operation
if nl:
target_cls = torch.from_numpy(cls).view(-1, 1).float() # always (N,1)
target_box = torch.from_numpy(box).reshape(-1, 4).float() # always (N,4)
else:
target_cls = torch.zeros((0, 1), dtype=torch.float32)
target_box = torch.zeros((0, 4), dtype=torch.float32)
# Convert HWC to CHW, BGR to RGB
sample = image.transpose((2, 0, 1))[::-1]
sample = numpy.ascontiguousarray(sample)
# init: return torch.from_numpy(sample), target_cls, target_box, torch.zeros(nl)
return torch.from_numpy(sample), target_cls, target_box, torch.zeros((nl, 1), dtype=torch.long)
def __len__(self):
return len(self.filenames)
def load_image(self, i):
image = cv2.imread(self.filenames[i])
if image is None:
raise ValueError(f"Image not found or unable to open: {self.filenames[i]}")
h, w = image.shape[:2]
r = self.input_size / max(h, w)
if r != 1:
image = cv2.resize(
image, dsize=(int(w * r), int(h * r)), interpolation=resample() if self.augment else cv2.INTER_LINEAR
)
return image, (h, w)
def load_mosaic(self, index, params):
label4 = []
border = [-self.input_size // 2, -self.input_size // 2]
image4 = numpy.full((self.input_size * 2, self.input_size * 2, 3), 0, dtype=numpy.uint8)
y1a, y2a, x1a, x2a, y1b, y2b, x1b, x2b = (None, None, None, None, None, None, None, None)
xc = int(random.uniform(-border[0], 2 * self.input_size + border[1]))
yc = int(random.uniform(-border[0], 2 * self.input_size + border[1]))
indices = [index] + random.choices(self.indices, k=3)
random.shuffle(indices)
for i, index in enumerate(indices):
# Load image
image, _ = self.load_image(index)
shape = image.shape
if i == 0: # top left
x1a = max(xc - shape[1], 0)
y1a = max(yc - shape[0], 0)
x2a = xc
y2a = yc
x1b = shape[1] - (x2a - x1a)
y1b = shape[0] - (y2a - y1a)
x2b = shape[1]
y2b = shape[0]
if i == 1: # top right
x1a = xc
y1a = max(yc - shape[0], 0)
x2a = min(xc + shape[1], self.input_size * 2)
y2a = yc
x1b = 0
y1b = shape[0] - (y2a - y1a)
x2b = min(shape[1], x2a - x1a)
y2b = shape[0]
if i == 2: # bottom left
x1a = max(xc - shape[1], 0)
y1a = yc
x2a = xc
y2a = min(self.input_size * 2, yc + shape[0])
x1b = shape[1] - (x2a - x1a)
y1b = 0
x2b = shape[1]
y2b = min(y2a - y1a, shape[0])
if i == 3: # bottom right
x1a = xc
y1a = yc
x2a = min(xc + shape[1], self.input_size * 2)
y2a = min(self.input_size * 2, yc + shape[0])
x1b = 0
y1b = 0
x2b = min(shape[1], x2a - x1a)
y2b = min(y2a - y1a, shape[0])
pad_w = (x1a if x1a is not None else 0) - (x1b if x1b is not None else 0)
pad_h = (y1a if y1a is not None else 0) - (y1b if y1b is not None else 0)
image4[y1a:y2a, x1a:x2a] = image[y1b:y2b, x1b:x2b]
# Labels
label = self.labels[index].copy()
if len(label):
label[:, 1:] = wh2xy(label[:, 1:], shape[1], shape[0], pad_w, pad_h)
label4.append(label)
# Concat/clip labels
label4 = numpy.concatenate(label4, 0)
for x in label4[:, 1:]:
numpy.clip(x, 0, 2 * self.input_size, out=x)
# Augment
image4, label4 = random_perspective(image4, label4, params, border)
return image4, label4
@staticmethod
def collate_fn(batch):
samples, cls, box, indices = zip(*batch)
# ensure empty tensor shape is correct
cls = [c.view(-1, 1) for c in cls]
box = [b.reshape(-1, 4) for b in box]
indices = [i for i in indices]
cls = torch.cat(cls, dim=0) if cls else torch.zeros((0, 1))
box = torch.cat(box, dim=0) if box else torch.zeros((0, 4))
indices = torch.cat(indices, dim=0) if indices else torch.zeros((0,), dtype=torch.long)
new_indices = list(indices)
for i in range(len(indices)):
new_indices[i] += i
indices = torch.cat(new_indices, dim=0)
targets = {"cls": cls, "box": box, "idx": indices}
return torch.stack(samples, dim=0), targets
@staticmethod
def load_label_use_cache(filenames):
path = f"{os.path.dirname(filenames[0])}.cache"
if os.path.exists(path):
return torch.load(path, weights_only=False)
x = {}
for filename in filenames:
try:
# verify images
with open(filename, "rb") as f:
image = Image.open(f)
image.verify() # PIL verify
shape = image.size # image size
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
assert image.format is not None and image.format.lower() in FORMATS, (
f"invalid image format {image.format}"
)
# verify labels
a = f"{os.sep}images{os.sep}"
b = f"{os.sep}labels{os.sep}"
if os.path.isfile(b.join(filename.rsplit(a, 1)).rsplit(".", 1)[0] + ".txt"):
with open(b.join(filename.rsplit(a, 1)).rsplit(".", 1)[0] + ".txt") as f:
label = [x.split() for x in f.read().strip().splitlines() if len(x)]
label = numpy.array(label, dtype=numpy.float32)
nl = len(label)
if nl:
assert (label >= 0).all()
assert label.shape[1] == 5
assert (label[:, 1:] <= 1).all()
_, i = numpy.unique(label, axis=0, return_index=True)
if len(i) < nl: # duplicate row check
label = label[i] # remove duplicates
else:
label = numpy.zeros((0, 5), dtype=numpy.float32)
else:
label = numpy.zeros((0, 5), dtype=numpy.float32)
except FileNotFoundError:
label = numpy.zeros((0, 5), dtype=numpy.float32)
except AssertionError:
continue
x[filename] = label
torch.save(x, path)
return x
@staticmethod
def load_label(filenames):
x = {}
for filename in filenames:
try:
# verify images
with open(filename, "rb") as f:
image = Image.open(f)
image.verify()
shape = image.size
assert (shape[0] > 9) & (shape[1] > 9), f"image size {shape} <10 pixels"
assert image.format is not None and image.format.lower() in FORMATS, (
f"invalid image format {image.format}"
)
# verify labels
a = f"{os.sep}images{os.sep}"
b = f"{os.sep}labels{os.sep}"
label_path = b.join(filename.rsplit(a, 1)).rsplit(".", 1)[0] + ".txt"
if os.path.isfile(label_path):
rows = []
with open(label_path) as f:
for line in f:
parts = line.strip().split()
if len(parts) == 5: # YOLO format
rows.append([float(x) for x in parts])
label = numpy.array(rows, dtype=numpy.float32) if rows else numpy.zeros((0, 5), dtype=numpy.float32)
if label.shape[0]:
assert (label >= 0).all()
assert label.shape[1] == 5
assert (label[:, 1:] <= 1.0001).all()
_, i = numpy.unique(label, axis=0, return_index=True)
label = label[i]
else:
label = numpy.zeros((0, 5), dtype=numpy.float32)
except (FileNotFoundError, AssertionError):
label = numpy.zeros((0, 5), dtype=numpy.float32)
x[filename] = label
return x
def wh2xy(x, w=640, h=640, pad_w=0, pad_h=0):
# Convert nx4 boxes
# from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
y = numpy.copy(x)
y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + pad_w # top left x
y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + pad_h # top left y
y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + pad_w # bottom right x
y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + pad_h # bottom right y
return y
def xy2wh(x, w, h):
# warning: inplace clip
x[:, [0, 2]] = x[:, [0, 2]].clip(0, w - 1e-3) # x1, x2
x[:, [1, 3]] = x[:, [1, 3]].clip(0, h - 1e-3) # y1, y2
# Convert nx4 boxes
# from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
y = numpy.copy(x)
y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center
y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center
y[:, 2] = (x[:, 2] - x[:, 0]) / w # width
y[:, 3] = (x[:, 3] - x[:, 1]) / h # height
return y
def resample():
choices = (cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LINEAR, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4)
return random.choice(seq=choices)
def augment_hsv(image, params):
# HSV color-space augmentation
h = params["hsv_h"]
s = params["hsv_s"]
v = params["hsv_v"]
r = numpy.random.uniform(-1, 1, 3) * [h, s, v] + 1
h, s, v = cv2.split(cv2.cvtColor(image, cv2.COLOR_BGR2HSV))
x = numpy.arange(0, 256, dtype=r.dtype)
lut_h = ((x * r[0]) % 180).astype("uint8")
lut_s = numpy.clip(x * r[1], 0, 255).astype("uint8")
lut_v = numpy.clip(x * r[2], 0, 255).astype("uint8")
hsv = cv2.merge((cv2.LUT(h, lut_h), cv2.LUT(s, lut_s), cv2.LUT(v, lut_v)))
cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR, dst=image) # no return needed
def resize(image, input_size, augment):
# Resize and pad image while meeting stride-multiple constraints
shape = image.shape[:2] # current shape [height, width]
# Scale ratio (new / old)
r = min(input_size / shape[0], input_size / shape[1])
if not augment: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
pad = int(round(shape[1] * r)), int(round(shape[0] * r))
w = (input_size - pad[0]) / 2
h = (input_size - pad[1]) / 2
if shape[::-1] != pad: # resize
image = cv2.resize(image, dsize=pad, interpolation=resample() if augment else cv2.INTER_LINEAR)
top, bottom = int(round(h - 0.1)), int(round(h + 0.1))
left, right = int(round(w - 0.1)), int(round(w + 0.1))
image = cv2.copyMakeBorder(image, top, bottom, left, right, cv2.BORDER_CONSTANT) # add border
return image, (r, r), (w, h)
def candidates(box1, box2):
# box1(4,n), box2(4,n)
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
aspect_ratio = numpy.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
return (w2 > 2) & (h2 > 2) & (w2 * h2 / (w1 * h1 + 1e-16) > 0.1) & (aspect_ratio < 100)
def random_perspective(image, label, params, border=(0, 0)):
h = image.shape[0] + border[0] * 2
w = image.shape[1] + border[1] * 2
# Center
center = numpy.eye(3)
center[0, 2] = -image.shape[1] / 2 # x translation (pixels)
center[1, 2] = -image.shape[0] / 2 # y translation (pixels)
# Perspective
perspective = numpy.eye(3)
# Rotation and Scale
rotate = numpy.eye(3)
a = random.uniform(-params["degrees"], params["degrees"])
s = random.uniform(1 - params["scale"], 1 + params["scale"])
rotate[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
# Shear
shear = numpy.eye(3)
shear[0, 1] = math.tan(random.uniform(-params["shear"], params["shear"]) * math.pi / 180)
shear[1, 0] = math.tan(random.uniform(-params["shear"], params["shear"]) * math.pi / 180)
# Translation
translate = numpy.eye(3)
translate[0, 2] = random.uniform(0.5 - params["translate"], 0.5 + params["translate"]) * w
translate[1, 2] = random.uniform(0.5 - params["translate"], 0.5 + params["translate"]) * h
# Combined rotation matrix, order of operations (right to left) is IMPORTANT
matrix = translate @ shear @ rotate @ perspective @ center
if (border[0] != 0) or (border[1] != 0) or (matrix != numpy.eye(3)).any(): # image changed
image = cv2.warpAffine(image, matrix[:2], dsize=(w, h), borderValue=(0, 0, 0))
# Transform label coordinates
n = len(label)
if n:
xy = numpy.ones((n * 4, 3))
xy[:, :2] = label[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = xy @ matrix.T # transform
xy = xy[:, :2].reshape(n, 8) # perspective rescale or affine
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
box = numpy.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# clip
box[:, [0, 2]] = box[:, [0, 2]].clip(0, w)
box[:, [1, 3]] = box[:, [1, 3]].clip(0, h)
# filter candidates
indices = candidates(box1=label[:, 1:5].T * s, box2=box.T)
label = label[indices]
label[:, 1:5] = box[indices]
return image, label
def mix_up(image1, label1, image2, label2):
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
alpha = numpy.random.beta(a=32.0, b=32.0) # mix-up ratio, alpha=beta=32.0
image = (image1 * alpha + image2 * (1 - alpha)).astype(numpy.uint8)
label = numpy.concatenate((label1, label2), 0)
return image, label
class Albumentations:
def __init__(self):
self.transform = None
try:
import albumentations
transforms = [
albumentations.Blur(p=0.01),
albumentations.CLAHE(p=0.01),
albumentations.ToGray(p=0.01),
albumentations.MedianBlur(p=0.01),
]
self.transform = albumentations.Compose(
transforms, albumentations.BboxParams(format="yolo", label_fields=["class_labels"])
)
except ImportError: # package not installed, skip
pass
def __call__(self, image, box, cls):
if self.transform:
x = self.transform(image=image, bboxes=box, class_labels=cls)
image = x["image"]
box = numpy.array(x["bboxes"])
cls = numpy.array(x["class_labels"])
return image, box, cls

250
utils/fed_util.py Normal file
View File

@@ -0,0 +1,250 @@
import os
import re
import random
from collections import defaultdict
from typing import Dict, List, Optional, Set, Any
from nets import nn
def _image_to_label_path(img_path: str) -> str:
"""
Convert an image path like ".../images/train2017/xxx.jpg"
to the corresponding label path ".../labels/train2017/xxx.txt".
Works for POSIX/Windows separators.
"""
# swap "/images/" (or "\images\") to "/labels/"
label_path = re.sub(r"([/\\])images([/\\])", r"\1labels\2", img_path)
# swap extension to .txt
root, _ = os.path.splitext(label_path)
return root + ".txt"
def _parse_yolo_label_file(label_path: str) -> Set[int]:
"""
Return a set of class_ids found in a YOLO .txt label file.
Empty file -> empty set. Missing file -> empty set.
Robust to blank lines / trailing spaces.
"""
class_ids: Set[int] = set()
if not os.path.exists(label_path):
return class_ids
try:
with open(label_path, "r", encoding="utf-8") as f:
for line in f:
line = line.strip()
if not line:
continue
# YOLO format: cls cx cy w h
parts = line.split()
if not parts:
continue
try:
cls = int(parts[0])
except ValueError:
# handle weird case like '23.0'
try:
cls = int(float(parts[0]))
except ValueError:
# skip malformed line
continue
class_ids.add(cls)
except Exception:
# If the file can't be read for some reason, treat as no labels
return set()
return class_ids
def divide_trainset(
trainset_path: str,
num_local_class: int,
num_client: int,
min_data: int,
max_data: int,
mode: str = "overlap", # "overlap" or "disjoint"
seed: Optional[int] = None,
) -> Dict[str, Any]:
"""
Build a federated split from a YOLO dataset list file.
Args:
trainset_path: path to a .txt file containing one image path per line
e.g. /COCO/images/train2017/1111.jpg
num_local_class: how many distinct classes to sample for each client
num_client: number of clients
min_data: minimum number of images per client
max_data: maximum number of images per client
mode: "overlap" -> images may be shared across clients
"disjoint" -> each image is used by at most one client
seed: optional random seed for reproducibility
Returns:
trainset_divided = {
"users": ["c_00001", ...],
"user_data": {
"c_00001": {"filename": [img_path, ...]},
...
},
"num_samples": [len(list_for_user1), len(list_for_user2), ...]
}
Example:
dataset = divide_trainset(
trainset_path="/COCO/train2017.txt",
num_local_class=3,
num_client=5,
min_data=10,
max_data=20,
mode="disjoint", # or "overlap"
seed=42
)
print(dataset["users"]) # ['c_00001', ..., 'c_00005']
print(dataset["num_samples"]) # e.g. [10, 12, 18, 9, 15]
print(dataset["user_data"]["c_00001"]["filename"][:3])
"""
if seed is not None:
random.seed(seed)
# ---- Basic validations (defensive programming) ----
if num_client <= 0:
raise ValueError("num_client must be > 0")
if num_local_class <= 0:
raise ValueError("num_local_class must be > 0")
if min_data < 0 or max_data < 0:
raise ValueError("min_data/max_data must be >= 0")
if max_data < min_data:
raise ValueError("max_data must be >= min_data")
if mode not in {"overlap", "disjoint"}:
raise ValueError('mode must be "overlap" or "disjoint"')
# ---- 1) Read image list ----
with open(trainset_path, "r", encoding="utf-8") as f:
all_images_raw = [ln.strip() for ln in f if ln.strip()]
# Normalize and deduplicate image paths (safe)
all_images: List[str] = []
seen = set()
for p in all_images_raw:
# keep exact string (dont join with cwd), just normalize slashes
norm = os.path.normpath(p)
if norm not in seen:
seen.add(norm)
all_images.append(norm)
# ---- 2) Build mappings from labels ----
class_to_images: Dict[int, Set[str]] = defaultdict(set)
image_to_classes: Dict[str, Set[int]] = {}
missing_label_files = 0
empty_label_files = 0
parsed_images = 0
for img in all_images:
lbl = _image_to_label_path(img)
if not os.path.exists(lbl):
# Missing labels: skip image (no class info)
missing_label_files += 1
continue
classes = _parse_yolo_label_file(lbl)
if not classes:
# No objects in this image -> skip (no class bucket)
empty_label_files += 1
continue
image_to_classes[img] = classes
for c in classes:
class_to_images[c].add(img)
parsed_images += 1
if not class_to_images:
# No usable images found
return {
"users": [f"c_{i + 1:05d}" for i in range(num_client)],
"user_data": {f"c_{i + 1:05d}": {"filename": []} for i in range(num_client)},
"num_samples": [0 for _ in range(num_client)],
}
all_classes: List[int] = sorted(class_to_images.keys())
# Available pool for disjoint mode (only images with labels)
available_images: Set[str] = set(image_to_classes.keys())
# ---- 3) Allocate to clients ----
result = {"users": [], "user_data": {}, "num_samples": []}
for cid in range(num_client):
user_id = f"c_{cid + 1:05d}"
result["users"].append(user_id)
# Pick the classes for this client (sample without replacement from global class set)
k = min(num_local_class, len(all_classes))
chosen_classes = random.sample(all_classes, k) if k > 0 else []
# Decide how many samples for this client
need = min_data if min_data == max_data else random.randint(min_data, max_data)
# Build the candidate pool for this client
if mode == "overlap":
pool_set: Set[str] = set()
for c in chosen_classes:
pool_set.update(class_to_images[c])
else: # "disjoint": restrict to currently available images
pool_set = set()
for c in chosen_classes:
# intersect with available images
pool_set.update(class_to_images[c] & available_images)
# Deduplicate and sample
pool_list = list(pool_set)
if len(pool_list) <= need:
chosen_imgs = pool_list[:] # take all (can be fewer than need)
else:
chosen_imgs = random.sample(pool_list, need)
# Record for the user
result["user_data"][user_id] = {"filename": chosen_imgs}
result["num_samples"].append(len(chosen_imgs))
# If disjoint, remove selected images from availability everywhere
if mode == "disjoint" and chosen_imgs:
for img in chosen_imgs:
if img in available_images:
available_images.remove(img)
# remove from every class bucket this image belongs to
for c in image_to_classes.get(img, []):
if img in class_to_images[c]:
class_to_images[c].remove(img)
# Optional: prune empty classes from all_classes to speed up later loops
# (keep list stable; just skip empties naturally)
# (Optional) You can print some quick diagnostics if helpful:
# print(f"[INFO] Parsed images with labels: {parsed_images}")
# print(f"[INFO] Missing label files: {missing_label_files}")
# print(f"[INFO] Empty label files: {empty_label_files}")
return result
def init_model(model_name, num_classes):
"""
Initialize the model for a specific learning task
Args:
:param model_name: Name of the model
:param num_classes: Number of classes
"""
model = None
if model_name == "yolo_v11_n":
model = nn.yolo_v11_n(num_classes=num_classes)
elif model_name == "yolo_v11_s":
model = nn.yolo_v11_s(num_classes=num_classes)
elif model_name == "yolo_v11_m":
model = nn.yolo_v11_m(num_classes=num_classes)
elif model_name == "yolo_v11_l":
model = nn.yolo_v11_l(num_classes=num_classes)
elif model_name == "yolo_v11_x":
model = nn.yolo_v11_x(num_classes=num_classes)
else:
raise ValueError("Model {} is not supported.".format(model_name))
return model

818
utils/util.py Normal file
View File

@@ -0,0 +1,818 @@
"""
Utility functions for yolo.
"""
import copy
import random
from time import time
import math
import numpy
import torch
import torchvision
from torch.nn.functional import cross_entropy
def setup_seed():
"""
Setup random seed.
"""
random.seed(0)
numpy.random.seed(0)
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def setup_multi_processes():
"""
Setup multi-processing environment variables.
"""
import cv2
from os import environ
from platform import system
# set multiprocess start method as `fork` to speed up the training
if system() != "Windows":
torch.multiprocessing.set_start_method("fork", force=True)
# disable opencv multithreading to avoid system being overloaded
cv2.setNumThreads(0)
# setup OMP threads
if "OMP_NUM_THREADS" not in environ:
environ["OMP_NUM_THREADS"] = "1"
# setup MKL threads
if "MKL_NUM_THREADS" not in environ:
environ["MKL_NUM_THREADS"] = "1"
def export_onnx(args):
import onnx # noqa
inputs = ["images"]
outputs = ["outputs"]
dynamic = {"outputs": {0: "batch", 1: "anchors"}}
m = torch.load("./weights/best.pt", weights_only=False)["model"].float()
x = torch.zeros((1, 3, args.input_size, args.input_size))
torch.onnx.export(
m.cpu(),
(x.cpu(),),
f="./weights/best.onnx",
verbose=False,
opset_version=12,
# WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
do_constant_folding=True,
input_names=inputs,
output_names=outputs,
dynamic_axes=dynamic or None,
)
# Checks
model_onnx = onnx.load("./weights/best.onnx") # load onnx model
onnx.checker.check_model(model_onnx) # check onnx model
onnx.save(model_onnx, "./weights/best.onnx")
# Inference example
# https://github.com/ultralytics/ultralytics/blob/main/ultralytics/nn/autobackend.py
def wh2xy(x):
y = x.clone() if isinstance(x, torch.Tensor) else numpy.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def make_anchors(x, strides, offset=0.5):
assert x is not None
anchor_tensor, stride_tensor = [], []
dtype, device = x[0].dtype, x[0].device
for i, stride in enumerate(strides):
_, _, h, w = x[i].shape
sx = torch.arange(end=w, device=device, dtype=dtype) + offset # shift x
sy = torch.arange(end=h, device=device, dtype=dtype) + offset # shift y
sy, sx = torch.meshgrid(sy, sx, indexing="ij")
anchor_tensor.append(torch.stack((sx, sy), -1).view(-1, 2))
stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
return torch.cat(anchor_tensor), torch.cat(stride_tensor)
def compute_metric(output, target, iou_v):
# intersection(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
(a1, a2) = target[:, 1:].unsqueeze(1).chunk(2, 2)
(b1, b2) = output[:, :4].unsqueeze(0).chunk(2, 2)
intersection = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
# IoU = intersection / (area1 + area2 - intersection)
iou = intersection / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - intersection + 1e-7)
correct = numpy.zeros((output.shape[0], iou_v.shape[0]))
correct = correct.astype(bool)
for i in range(len(iou_v)):
# IoU > threshold and classes match
x = torch.where((iou >= iou_v[i]) & (target[:, 0:1] == output[:, 5]))
if x[0].shape[0]:
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detect, iou]
if x[0].shape[0] > 1:
matches = matches[matches[:, 2].argsort()[::-1]]
matches = matches[numpy.unique(matches[:, 1], return_index=True)[1]]
matches = matches[numpy.unique(matches[:, 0], return_index=True)[1]]
correct[matches[:, 1].astype(int), i] = True
return torch.tensor(correct, dtype=torch.bool, device=output.device)
def non_max_suppression(outputs, confidence_threshold=0.001, iou_threshold=0.65):
max_wh = 7680
max_det = 300
max_nms = 30000
bs = outputs.shape[0] # batch size
nc = outputs.shape[1] - 4 # number of classes
xc = outputs[:, 4 : 4 + nc].amax(1) > confidence_threshold # candidates
# Settings
start = time()
limit = 0.5 + 0.05 * bs # seconds to quit after
output = [torch.zeros((0, 6), device=outputs.device)] * bs
for index, x in enumerate(outputs): # image index, image inference
x = x.transpose(0, -1)[xc[index]] # confidence
# If none remain process next image
if not x.shape[0]:
continue
# matrix nx6 (box, confidence, cls)
box, cls = x.split((4, nc), 1)
box = wh2xy(box) # (cx, cy, w, h) to (x1, y1, x2, y2)
if nc > 1:
i, j = (cls > confidence_threshold).nonzero(as_tuple=False).T
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float()), dim=1)
else: # best class only
conf, j = cls.max(1, keepdim=True)
x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > confidence_threshold]
# Check shape
n = x.shape[0] # number of boxes
if not n: # no boxes
continue
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence and remove excess boxes
# Batched NMS
c = x[:, 5:6] * max_wh # classes
boxes, scores = x[:, :4] + c, x[:, 4] # boxes, scores
indices = torchvision.ops.nms(boxes, scores, iou_threshold) # NMS
indices = indices[:max_det] # limit detections
output[index] = x[indices]
if (time() - start) > limit:
break # time limit exceeded
return output
def smooth(y, f=0.1):
# Box filter of fraction f
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
p = numpy.ones(nf // 2) # ones padding
yp = numpy.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
return numpy.convolve(yp, numpy.ones(nf) / nf, mode="valid") # y-smoothed
def plot_pr_curve(px, py, ap, names, save_dir):
from matplotlib import pyplot
fig, ax = pyplot.subplots(1, 1, figsize=(9, 6), tight_layout=True)
py = numpy.stack(py, axis=1)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py.T):
ax.plot(px, y, linewidth=1, label=f"{names[i]} {ap[i, 0]:.3f}") # plot(recall, precision)
else:
ax.plot(px, py, linewidth=1, color="grey") # plot(recall, precision)
ax.plot(
px,
py.mean(1),
linewidth=3,
color="blue",
label="all classes %.3f mAP@0.5" % ap[:, 0].mean(),
)
ax.set_xlabel("Recall")
ax.set_ylabel("Precision")
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
ax.set_title("Precision-Recall Curve")
fig.savefig(save_dir, dpi=250)
pyplot.close(fig)
def plot_curve(px, py, names, save_dir, x_label="Confidence", y_label="Metric"):
from matplotlib import pyplot
figure, ax = pyplot.subplots(1, 1, figsize=(9, 6), tight_layout=True)
if 0 < len(names) < 21: # display per-class legend if < 21 classes
for i, y in enumerate(py):
ax.plot(px, y, linewidth=1, label=f"{names[i]}") # plot(confidence, metric)
else:
ax.plot(px, py.T, linewidth=1, color="grey") # plot(confidence, metric)
y = smooth(py.mean(0), f=0.05)
ax.plot(
px,
y,
linewidth=3,
color="blue",
label=f"all classes {y.max():.3f} at {px[y.argmax()]:.3f}",
)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
ax.set_title(f"{y_label}-Confidence Curve")
figure.savefig(save_dir, dpi=250)
pyplot.close(figure)
def compute_ap(tp, conf, output, target, plot=False, names=(), eps=1e-16):
"""
Compute the average precision, given the recall and precision curves.
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
# Arguments
tp: True positives (nparray, nx1 or nx10).
conf: Object-ness value from 0-1 (nparray).
output: Predicted object classes (nparray).
target: True object classes (nparray).
# Returns
The average precision
"""
# Sort by object-ness
i = numpy.argsort(-conf)
tp, conf, output = tp[i], conf[i], output[i]
# Find unique classes
unique_classes, nt = numpy.unique(target, return_counts=True)
nc = unique_classes.shape[0] # number of classes, number of detections
# Create Precision-Recall curve and compute AP for each class
p = numpy.zeros((nc, 1000))
r = numpy.zeros((nc, 1000))
ap = numpy.zeros((nc, tp.shape[1]))
px, py = numpy.linspace(start=0, stop=1, num=1000), [] # for plotting
for ci, c in enumerate(unique_classes):
i = output == c
nl = nt[ci] # number of labels
no = i.sum() # number of outputs
if no == 0 or nl == 0:
continue
# Accumulate FPs and TPs
fpc = (1 - tp[i]).cumsum(0)
tpc = tp[i].cumsum(0)
# Recall
recall = tpc / (nl + eps) # recall curve
# negative x, xp because xp decreases
r[ci] = numpy.interp(-px, -conf[i], recall[:, 0], left=0)
# Precision
precision = tpc / (tpc + fpc) # precision curve
p[ci] = numpy.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
# AP from recall-precision curve
for j in range(tp.shape[1]):
m_rec = numpy.concatenate(([0.0], recall[:, j], [1.0]))
m_pre = numpy.concatenate(([1.0], precision[:, j], [0.0]))
# Compute the precision envelope
m_pre = numpy.flip(numpy.maximum.accumulate(numpy.flip(m_pre)))
# Integrate area under curve
x = numpy.linspace(start=0, stop=1, num=101) # 101-point interp (COCO)
ap[ci, j] = numpy.trapz(numpy.interp(x, m_rec, m_pre), x) # integrate
if plot and j == 0:
py.append(numpy.interp(px, m_rec, m_pre)) # precision at mAP@0.5
# Compute F1 (harmonic mean of precision and recall)
f1 = 2 * p * r / (p + r + eps)
if plot:
names = dict(enumerate(names)) # to dict
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
plot_pr_curve(px, py, ap, names, save_dir="./weights/PR_curve.png")
plot_curve(px, f1, names, save_dir="./weights/F1_curve.png", y_label="F1")
plot_curve(px, p, names, save_dir="./weights/P_curve.png", y_label="Precision")
plot_curve(px, r, names, save_dir="./weights/R_curve.png", y_label="Recall")
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
p, r, f1 = p[:, i], r[:, i], f1[:, i]
tp = (r * nt).round() # true positives
fp = (tp / (p + eps) - tp).round() # false positives
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
m_pre, m_rec = p.mean(), r.mean()
map50, mean_ap = ap50.mean(), ap.mean()
return tp, fp, m_pre, m_rec, map50, mean_ap
def compute_iou(box1, box2, eps=1e-7):
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
# Intersection area
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * (
b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
).clamp(0)
# Union Area
union = w1 * h1 + w2 * h2 - inter + eps
# IoU
iou = inter / union
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
c2 = cw**2 + ch**2 + eps # convex diagonal squared
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
# https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi**2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
def strip_optimizer(filename):
x = torch.load(filename, map_location="cpu", weights_only=False)
x["model"].half() # to FP16
for p in x["model"].parameters():
p.requires_grad = False
torch.save(x, f=filename)
def clip_gradients(model, max_norm=10.0):
parameters = model.parameters()
torch.nn.utils.clip_grad_norm_(parameters, max_norm=max_norm)
def load_weight(model, ckpt):
dst = model.state_dict()
src = torch.load(ckpt, weights_only=False)["model"].float().cpu()
ckpt = {}
for k, v in src.state_dict().items():
if k in dst and v.shape == dst[k].shape:
ckpt[k] = v
model.load_state_dict(state_dict=ckpt, strict=False)
return model
def set_params(model, decay):
p1 = []
p2 = []
norm = tuple(v for k, v in torch.nn.__dict__.items() if "Norm" in k)
for m in model.modules():
for n, p in m.named_parameters(recurse=0):
if not p.requires_grad:
continue
if n == "bias": # bias (no decay)
p1.append(p)
elif n == "weight" and isinstance(m, norm): # norm-weight (no decay)
p1.append(p)
else:
p2.append(p) # weight (with decay)
return [{"params": p1, "weight_decay": 0.00}, {"params": p2, "weight_decay": decay}]
def plot_lr(args, optimizer, scheduler, num_steps):
from matplotlib import pyplot
optimizer = copy.copy(optimizer)
scheduler = copy.copy(scheduler)
y = []
for epoch in range(args.epochs):
for i in range(num_steps):
step = i + num_steps * epoch
scheduler.step(step, optimizer)
y.append(optimizer.param_groups[0]["lr"])
pyplot.plot(y, ".-", label="LR")
pyplot.xlabel("step")
pyplot.ylabel("LR")
pyplot.grid()
pyplot.xlim(0, args.epochs * num_steps)
pyplot.ylim(0)
pyplot.savefig("./weights/lr.png", dpi=200)
pyplot.close()
class CosineLR:
def __init__(self, args, params, num_steps):
max_lr = params["max_lr"]
min_lr = params["min_lr"]
warmup_steps = int(max(params["warmup_epochs"] * num_steps, 100))
decay_steps = int(args.epochs * num_steps - warmup_steps)
warmup_lr = numpy.linspace(min_lr, max_lr, int(warmup_steps))
decay_lr = []
for step in range(1, decay_steps + 1):
alpha = math.cos(math.pi * step / decay_steps)
decay_lr.append(min_lr + 0.5 * (max_lr - min_lr) * (1 + alpha))
self.total_lr = numpy.concatenate((warmup_lr, decay_lr))
def step(self, step, optimizer):
for param_group in optimizer.param_groups:
param_group["lr"] = self.total_lr[step]
class LinearLR:
def __init__(self, args, params, num_steps):
max_lr = params["max_lr"]
min_lr = params["min_lr"]
warmup_steps = int(max(params["warmup_epochs"] * num_steps, 100))
decay_steps = max(1, int(args.epochs * num_steps - warmup_steps))
warmup_lr = numpy.linspace(min_lr, max_lr, int(warmup_steps), endpoint=False)
decay_lr = numpy.linspace(max_lr, min_lr, decay_steps)
self.total_lr = numpy.concatenate((warmup_lr, decay_lr))
def step(self, step, optimizer):
for param_group in optimizer.param_groups:
param_group["lr"] = self.total_lr[step]
class EMA:
"""
Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
Keeps a moving average of everything in the model state_dict (parameters and buffers)
For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
"""
def __init__(self, model, decay=0.9999, tau=2000, updates=0):
# Create EMA
self.ema = copy.deepcopy(model).eval() # FP32 EMA
self.updates = updates # number of EMA updates
# decay exponential ramp (to help early epochs)
self.decay = lambda x: decay * (1 - math.exp(-x / tau))
for p in self.ema.parameters():
p.requires_grad_(False)
def update(self, model):
if hasattr(model, "module"):
model = model.module
# Update EMA parameters
with torch.no_grad():
self.updates += 1
d = self.decay(self.updates)
msd = model.state_dict() # model state_dict
for k, v in self.ema.state_dict().items():
if v.dtype.is_floating_point:
v *= d
v += (1 - d) * msd[k].detach()
class AverageMeter:
def __init__(self):
self.num = 0
self.sum = 0
self.avg = 0
def update(self, v, n):
if not math.isnan(float(v)):
self.num = self.num + n
self.sum = self.sum + v * n
self.avg = self.sum / self.num
class Assigner(torch.nn.Module):
def __init__(self, nc=80, top_k=13, alpha=1.0, beta=6.0, eps=1e-9):
super().__init__()
self.top_k = top_k
self.nc = nc
self.alpha = alpha
self.beta = beta
self.eps = eps
@torch.no_grad()
def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
batch_size = pd_scores.size(0)
num_max_boxes = gt_bboxes.size(1)
if num_max_boxes == 0:
device = gt_bboxes.device
return (
torch.zeros_like(pd_bboxes).to(device),
torch.zeros_like(pd_scores).to(device),
torch.zeros_like(pd_scores[..., 0]).to(device),
)
num_anchors = anc_points.shape[0]
shape = gt_bboxes.shape
lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2)
mask_in_gts = torch.cat((anc_points[None] - lt, rb - anc_points[None]), dim=2)
mask_in_gts = mask_in_gts.view(shape[0], shape[1], num_anchors, -1).amin(3).gt_(self.eps)
na = pd_bboxes.shape[-2]
gt_mask = (mask_in_gts * mask_gt).bool() # b, max_num_obj, h*w
overlaps = torch.zeros(
[batch_size, num_max_boxes, na],
dtype=pd_bboxes.dtype,
device=pd_bboxes.device,
)
bbox_scores = torch.zeros(
[batch_size, num_max_boxes, na],
dtype=pd_scores.dtype,
device=pd_scores.device,
)
ind = torch.zeros([2, batch_size, num_max_boxes], dtype=torch.long) # 2, b, max_num_obj
ind[0] = torch.arange(end=batch_size).view(-1, 1).expand(-1, num_max_boxes) # b, max_num_obj
ind[1] = gt_labels.squeeze(-1) # b, max_num_obj
bbox_scores[gt_mask] = pd_scores[ind[0], :, ind[1]][gt_mask] # b, max_num_obj, h*w
pd_boxes = pd_bboxes.unsqueeze(1).expand(-1, num_max_boxes, -1, -1)[gt_mask]
gt_boxes = gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[gt_mask]
overlaps[gt_mask] = compute_iou(gt_boxes, pd_boxes).squeeze(-1).clamp_(0)
align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)
top_k_mask = mask_gt.expand(-1, -1, self.top_k).bool()
top_k_metrics, top_k_indices = torch.topk(align_metric, self.top_k, dim=-1, largest=True)
if top_k_mask is None:
top_k_mask = (top_k_metrics.max(-1, keepdim=True)[0] > self.eps).expand_as(top_k_indices)
top_k_indices.masked_fill_(~top_k_mask, 0)
mask_top_k = torch.zeros(align_metric.shape, dtype=torch.int8, device=top_k_indices.device)
ones = torch.ones_like(top_k_indices[:, :, :1], dtype=torch.int8, device=top_k_indices.device)
for k in range(self.top_k):
mask_top_k.scatter_add_(-1, top_k_indices[:, :, k : k + 1], ones)
mask_top_k.masked_fill_(mask_top_k > 1, 0)
mask_top_k = mask_top_k.to(align_metric.dtype)
mask_pos = mask_top_k * mask_in_gts * mask_gt
fg_mask = mask_pos.sum(-2)
if fg_mask.max() > 1:
mask_multi_gts = (fg_mask.unsqueeze(1) > 1).expand(-1, num_max_boxes, -1)
max_overlaps_idx = overlaps.argmax(1)
is_max_overlaps = torch.zeros(mask_pos.shape, dtype=mask_pos.dtype, device=mask_pos.device)
is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1)
mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float()
fg_mask = mask_pos.sum(-2)
target_gt_idx = mask_pos.argmax(-2)
# Assigned target
index = torch.arange(end=batch_size, dtype=torch.int64, device=gt_labels.device)[..., None]
target_index = target_gt_idx + index * num_max_boxes
target_labels = gt_labels.long().flatten()[target_index]
target_bboxes = gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_index]
# Assigned target scores
target_labels.clamp_(0)
target_scores = torch.zeros(
(target_labels.shape[0], target_labels.shape[1], self.nc),
dtype=torch.int64,
device=target_labels.device,
)
target_scores.scatter_(2, target_labels.unsqueeze(-1), 1)
fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.nc)
target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)
# Normalize
align_metric *= mask_pos
pos_align_metrics = align_metric.amax(dim=-1, keepdim=True)
pos_overlaps = (overlaps * mask_pos).amax(dim=-1, keepdim=True)
norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
target_scores = target_scores * norm_align_metric
return target_bboxes, target_scores, fg_mask.bool()
class QFL(torch.nn.Module):
def __init__(self, beta=2.0):
super().__init__()
self.beta = beta
self.bce_loss = torch.nn.BCEWithLogitsLoss(reduction="none")
def forward(self, outputs, targets):
bce_loss = self.bce_loss(outputs, targets)
return torch.pow(torch.abs(targets - outputs.sigmoid()), self.beta) * bce_loss
class VFL(torch.nn.Module):
def __init__(self, alpha=0.75, gamma=2.00, iou_weighted=True):
super().__init__()
assert alpha >= 0.0
self.alpha = alpha
self.gamma = gamma
self.iou_weighted = iou_weighted
self.bce_loss = torch.nn.BCEWithLogitsLoss(reduction="none")
def forward(self, outputs, targets):
assert outputs.size() == targets.size()
targets = targets.type_as(outputs)
if self.iou_weighted:
focal_weight = (
targets * (targets > 0.0).float()
+ self.alpha * (outputs.sigmoid() - targets).abs().pow(self.gamma) * (targets <= 0.0).float()
)
else:
focal_weight = (targets > 0.0).float() + self.alpha * (outputs.sigmoid() - targets).abs().pow(
self.gamma
) * (targets <= 0.0).float()
return self.bce_loss(outputs, targets) * focal_weight
class FocalLoss(torch.nn.Module):
def __init__(self, alpha=0.25, gamma=1.5):
super().__init__()
self.alpha = alpha
self.gamma = gamma
self.bce_loss = torch.nn.BCEWithLogitsLoss(reduction="none")
def forward(self, outputs, targets):
loss = self.bce_loss(outputs, targets)
if self.alpha > 0:
alpha_factor = targets * self.alpha + (1 - targets) * (1 - self.alpha)
loss *= alpha_factor
if self.gamma > 0:
outputs_sigmoid = outputs.sigmoid()
p_t = targets * outputs_sigmoid + (1 - targets) * (1 - outputs_sigmoid)
gamma_factor = (1.0 - p_t) ** self.gamma
loss *= gamma_factor
return loss
class BoxLoss(torch.nn.Module):
def __init__(self, dfl_ch):
super().__init__()
self.dfl_ch = dfl_ch
def forward(
self,
pred_dist,
pred_bboxes,
anchor_points,
target_bboxes,
target_scores,
target_scores_sum,
fg_mask,
):
# IoU loss
weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
iou = compute_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask])
loss_box = ((1.0 - iou) * weight).sum() / target_scores_sum
# DFL loss
a, b = target_bboxes.chunk(2, -1)
target = torch.cat((anchor_points - a, b - anchor_points), -1)
target = target.clamp(0, self.dfl_ch - 0.01)
loss_dfl = self.df_loss(pred_dist[fg_mask].view(-1, self.dfl_ch + 1), target[fg_mask])
loss_dfl = (loss_dfl * weight).sum() / target_scores_sum
return loss_box, loss_dfl
@staticmethod
def df_loss(pred_dist, target):
# Distribution Focal Loss (DFL)
# https://ieeexplore.ieee.org/document/9792391
tl = target.long() # target left
tr = tl + 1 # target right
wl = tr - target # weight left
wr = 1 - wl # weight right
left_loss = cross_entropy(pred_dist, tl.view(-1), reduction="none").view(tl.shape)
right_loss = cross_entropy(pred_dist, tr.view(-1), reduction="none").view(tl.shape)
return (left_loss * wl + right_loss * wr).mean(-1, keepdim=True)
class ComputeLoss:
def __init__(self, model, params):
if hasattr(model, "module"):
model = model.module
device = next(model.parameters()).device
m = model.head # Head() module
self.params = params
self.stride = m.stride
self.nc = m.nc
self.no = m.no
self.reg_max = m.ch
self.device = device
self.box_loss = BoxLoss(m.ch - 1).to(device)
self.cls_loss = torch.nn.BCEWithLogitsLoss(reduction="none")
self.assigner = Assigner(nc=self.nc, top_k=10, alpha=0.5, beta=6.0)
self.project = torch.arange(m.ch, dtype=torch.float, device=device)
def box_decode(self, anchor_points, pred_dist):
b, a, c = pred_dist.shape
pred_dist = pred_dist.view(b, a, 4, c // 4)
pred_dist = pred_dist.softmax(3)
pred_dist = pred_dist.matmul(self.project.type(pred_dist.dtype))
lt, rb = pred_dist.chunk(2, -1)
x1y1 = anchor_points - lt
x2y2 = anchor_points + rb
return torch.cat(tensors=(x1y1, x2y2), dim=-1)
def __call__(self, outputs, targets):
x = torch.cat([i.view(outputs[0].shape[0], self.no, -1) for i in outputs], dim=2)
pred_distri, pred_scores = x.split(split_size=(self.reg_max * 4, self.nc), dim=1)
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
data_type = pred_scores.dtype
batch_size = pred_scores.shape[0]
input_size = torch.tensor(outputs[0].shape[2:], device=self.device, dtype=data_type) * self.stride[0]
anchor_points, stride_tensor = make_anchors(outputs, self.stride, offset=0.5)
idx = targets["idx"].view(-1, 1)
cls = targets["cls"].view(-1, 1)
box = targets["box"]
targets = torch.cat((idx, cls, box), dim=1).to(self.device)
if targets.shape[0] == 0:
gt = torch.zeros(batch_size, 0, 5, device=self.device)
else:
i = targets[:, 0]
_, counts = i.unique(return_counts=True)
counts = counts.to(dtype=torch.int32)
gt = torch.zeros(batch_size, counts.max(), 5, device=self.device)
for j in range(batch_size):
matches = i == j
n = matches.sum()
if n:
gt[j, :n] = targets[matches, 1:]
x = gt[..., 1:5].mul_(input_size[[1, 0, 1, 0]])
y = torch.empty_like(x)
dw = x[..., 2] / 2 # half-width
dh = x[..., 3] / 2 # half-height
y[..., 0] = x[..., 0] - dw # top left x
y[..., 1] = x[..., 1] - dh # top left y
y[..., 2] = x[..., 0] + dw # bottom right x
y[..., 3] = x[..., 1] + dh # bottom right y
gt[..., 1:5] = y
gt_labels, gt_bboxes = gt.split((1, 4), 2)
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
pred_bboxes = self.box_decode(anchor_points, pred_distri)
assigned_targets = self.assigner(
pred_scores.detach().sigmoid(),
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
anchor_points * stride_tensor,
gt_labels,
gt_bboxes,
mask_gt,
)
target_bboxes, target_scores, fg_mask = assigned_targets
target_scores_sum = max(target_scores.sum(), 1)
loss_cls = self.cls_loss(pred_scores, target_scores.to(data_type)).sum() / target_scores_sum # BCE
# Box loss
loss_box = torch.zeros(1, device=self.device)
loss_dfl = torch.zeros(1, device=self.device)
if fg_mask.sum():
target_bboxes /= stride_tensor
loss_box, loss_dfl = self.box_loss(
pred_distri,
pred_bboxes,
anchor_points,
target_bboxes,
target_scores,
target_scores_sum,
fg_mask,
)
loss_box *= self.params["box"] # box gain
loss_cls *= self.params["cls"] # cls gain
loss_dfl *= self.params["dfl"] # dfl gain
return loss_box, loss_cls, loss_dfl