Fedavg and YOLOv11 training
This commit is contained in:
250
utils/fed_util.py
Normal file
250
utils/fed_util.py
Normal file
@@ -0,0 +1,250 @@
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
from collections import defaultdict
|
||||
from typing import Dict, List, Optional, Set, Any
|
||||
|
||||
from nets import nn
|
||||
|
||||
|
||||
def _image_to_label_path(img_path: str) -> str:
|
||||
"""
|
||||
Convert an image path like ".../images/train2017/xxx.jpg"
|
||||
to the corresponding label path ".../labels/train2017/xxx.txt".
|
||||
Works for POSIX/Windows separators.
|
||||
"""
|
||||
# swap "/images/" (or "\images\") to "/labels/"
|
||||
label_path = re.sub(r"([/\\])images([/\\])", r"\1labels\2", img_path)
|
||||
# swap extension to .txt
|
||||
root, _ = os.path.splitext(label_path)
|
||||
return root + ".txt"
|
||||
|
||||
|
||||
def _parse_yolo_label_file(label_path: str) -> Set[int]:
|
||||
"""
|
||||
Return a set of class_ids found in a YOLO .txt label file.
|
||||
Empty file -> empty set. Missing file -> empty set.
|
||||
Robust to blank lines / trailing spaces.
|
||||
"""
|
||||
class_ids: Set[int] = set()
|
||||
if not os.path.exists(label_path):
|
||||
return class_ids
|
||||
try:
|
||||
with open(label_path, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
# YOLO format: cls cx cy w h
|
||||
parts = line.split()
|
||||
if not parts:
|
||||
continue
|
||||
try:
|
||||
cls = int(parts[0])
|
||||
except ValueError:
|
||||
# handle weird case like '23.0'
|
||||
try:
|
||||
cls = int(float(parts[0]))
|
||||
except ValueError:
|
||||
# skip malformed line
|
||||
continue
|
||||
class_ids.add(cls)
|
||||
except Exception:
|
||||
# If the file can't be read for some reason, treat as no labels
|
||||
return set()
|
||||
return class_ids
|
||||
|
||||
|
||||
def divide_trainset(
|
||||
trainset_path: str,
|
||||
num_local_class: int,
|
||||
num_client: int,
|
||||
min_data: int,
|
||||
max_data: int,
|
||||
mode: str = "overlap", # "overlap" or "disjoint"
|
||||
seed: Optional[int] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Build a federated split from a YOLO dataset list file.
|
||||
|
||||
Args:
|
||||
trainset_path: path to a .txt file containing one image path per line
|
||||
e.g. /COCO/images/train2017/1111.jpg
|
||||
num_local_class: how many distinct classes to sample for each client
|
||||
num_client: number of clients
|
||||
min_data: minimum number of images per client
|
||||
max_data: maximum number of images per client
|
||||
mode: "overlap" -> images may be shared across clients
|
||||
"disjoint" -> each image is used by at most one client
|
||||
seed: optional random seed for reproducibility
|
||||
|
||||
Returns:
|
||||
trainset_divided = {
|
||||
"users": ["c_00001", ...],
|
||||
"user_data": {
|
||||
"c_00001": {"filename": [img_path, ...]},
|
||||
...
|
||||
},
|
||||
"num_samples": [len(list_for_user1), len(list_for_user2), ...]
|
||||
}
|
||||
|
||||
Example:
|
||||
dataset = divide_trainset(
|
||||
trainset_path="/COCO/train2017.txt",
|
||||
num_local_class=3,
|
||||
num_client=5,
|
||||
min_data=10,
|
||||
max_data=20,
|
||||
mode="disjoint", # or "overlap"
|
||||
seed=42
|
||||
)
|
||||
|
||||
print(dataset["users"]) # ['c_00001', ..., 'c_00005']
|
||||
print(dataset["num_samples"]) # e.g. [10, 12, 18, 9, 15]
|
||||
print(dataset["user_data"]["c_00001"]["filename"][:3])
|
||||
"""
|
||||
if seed is not None:
|
||||
random.seed(seed)
|
||||
|
||||
# ---- Basic validations (defensive programming) ----
|
||||
if num_client <= 0:
|
||||
raise ValueError("num_client must be > 0")
|
||||
if num_local_class <= 0:
|
||||
raise ValueError("num_local_class must be > 0")
|
||||
if min_data < 0 or max_data < 0:
|
||||
raise ValueError("min_data/max_data must be >= 0")
|
||||
if max_data < min_data:
|
||||
raise ValueError("max_data must be >= min_data")
|
||||
if mode not in {"overlap", "disjoint"}:
|
||||
raise ValueError('mode must be "overlap" or "disjoint"')
|
||||
|
||||
# ---- 1) Read image list ----
|
||||
with open(trainset_path, "r", encoding="utf-8") as f:
|
||||
all_images_raw = [ln.strip() for ln in f if ln.strip()]
|
||||
|
||||
# Normalize and deduplicate image paths (safe)
|
||||
all_images: List[str] = []
|
||||
seen = set()
|
||||
for p in all_images_raw:
|
||||
# keep exact string (don’t join with cwd), just normalize slashes
|
||||
norm = os.path.normpath(p)
|
||||
if norm not in seen:
|
||||
seen.add(norm)
|
||||
all_images.append(norm)
|
||||
|
||||
# ---- 2) Build mappings from labels ----
|
||||
class_to_images: Dict[int, Set[str]] = defaultdict(set)
|
||||
image_to_classes: Dict[str, Set[int]] = {}
|
||||
|
||||
missing_label_files = 0
|
||||
empty_label_files = 0
|
||||
parsed_images = 0
|
||||
|
||||
for img in all_images:
|
||||
lbl = _image_to_label_path(img)
|
||||
if not os.path.exists(lbl):
|
||||
# Missing labels: skip image (no class info)
|
||||
missing_label_files += 1
|
||||
continue
|
||||
|
||||
classes = _parse_yolo_label_file(lbl)
|
||||
if not classes:
|
||||
# No objects in this image -> skip (no class bucket)
|
||||
empty_label_files += 1
|
||||
continue
|
||||
|
||||
image_to_classes[img] = classes
|
||||
for c in classes:
|
||||
class_to_images[c].add(img)
|
||||
parsed_images += 1
|
||||
|
||||
if not class_to_images:
|
||||
# No usable images found
|
||||
return {
|
||||
"users": [f"c_{i + 1:05d}" for i in range(num_client)],
|
||||
"user_data": {f"c_{i + 1:05d}": {"filename": []} for i in range(num_client)},
|
||||
"num_samples": [0 for _ in range(num_client)],
|
||||
}
|
||||
|
||||
all_classes: List[int] = sorted(class_to_images.keys())
|
||||
# Available pool for disjoint mode (only images with labels)
|
||||
available_images: Set[str] = set(image_to_classes.keys())
|
||||
|
||||
# ---- 3) Allocate to clients ----
|
||||
result = {"users": [], "user_data": {}, "num_samples": []}
|
||||
|
||||
for cid in range(num_client):
|
||||
user_id = f"c_{cid + 1:05d}"
|
||||
result["users"].append(user_id)
|
||||
|
||||
# Pick the classes for this client (sample without replacement from global class set)
|
||||
k = min(num_local_class, len(all_classes))
|
||||
chosen_classes = random.sample(all_classes, k) if k > 0 else []
|
||||
|
||||
# Decide how many samples for this client
|
||||
need = min_data if min_data == max_data else random.randint(min_data, max_data)
|
||||
|
||||
# Build the candidate pool for this client
|
||||
if mode == "overlap":
|
||||
pool_set: Set[str] = set()
|
||||
for c in chosen_classes:
|
||||
pool_set.update(class_to_images[c])
|
||||
else: # "disjoint": restrict to currently available images
|
||||
pool_set = set()
|
||||
for c in chosen_classes:
|
||||
# intersect with available images
|
||||
pool_set.update(class_to_images[c] & available_images)
|
||||
|
||||
# Deduplicate and sample
|
||||
pool_list = list(pool_set)
|
||||
if len(pool_list) <= need:
|
||||
chosen_imgs = pool_list[:] # take all (can be fewer than need)
|
||||
else:
|
||||
chosen_imgs = random.sample(pool_list, need)
|
||||
|
||||
# Record for the user
|
||||
result["user_data"][user_id] = {"filename": chosen_imgs}
|
||||
result["num_samples"].append(len(chosen_imgs))
|
||||
|
||||
# If disjoint, remove selected images from availability everywhere
|
||||
if mode == "disjoint" and chosen_imgs:
|
||||
for img in chosen_imgs:
|
||||
if img in available_images:
|
||||
available_images.remove(img)
|
||||
# remove from every class bucket this image belongs to
|
||||
for c in image_to_classes.get(img, []):
|
||||
if img in class_to_images[c]:
|
||||
class_to_images[c].remove(img)
|
||||
# Optional: prune empty classes from all_classes to speed up later loops
|
||||
# (keep list stable; just skip empties naturally)
|
||||
|
||||
# (Optional) You can print some quick diagnostics if helpful:
|
||||
# print(f"[INFO] Parsed images with labels: {parsed_images}")
|
||||
# print(f"[INFO] Missing label files: {missing_label_files}")
|
||||
# print(f"[INFO] Empty label files: {empty_label_files}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def init_model(model_name, num_classes):
|
||||
"""
|
||||
Initialize the model for a specific learning task
|
||||
Args:
|
||||
:param model_name: Name of the model
|
||||
:param num_classes: Number of classes
|
||||
"""
|
||||
model = None
|
||||
if model_name == "yolo_v11_n":
|
||||
model = nn.yolo_v11_n(num_classes=num_classes)
|
||||
elif model_name == "yolo_v11_s":
|
||||
model = nn.yolo_v11_s(num_classes=num_classes)
|
||||
elif model_name == "yolo_v11_m":
|
||||
model = nn.yolo_v11_m(num_classes=num_classes)
|
||||
elif model_name == "yolo_v11_l":
|
||||
model = nn.yolo_v11_l(num_classes=num_classes)
|
||||
elif model_name == "yolo_v11_x":
|
||||
model = nn.yolo_v11_x(num_classes=num_classes)
|
||||
else:
|
||||
raise ValueError("Model {} is not supported.".format(model_name))
|
||||
|
||||
return model
|
Reference in New Issue
Block a user