优化test和agg方法,增强模型评估和聚合逻辑的稳定性

This commit is contained in:
2025-10-03 20:23:50 +08:00
parent 9a5e6b5b71
commit 33586e0c0c

View File

@@ -49,11 +49,11 @@ class FedYoloServer(object):
return self.model.state_dict()
@torch.no_grad()
def test(self, args):
def test(self, args) -> dict:
"""
Evaluate global model on validation set using YOLO metrics (mAP, precision, recall).
Test the global model on the server's validation set.
Returns:
dict with {"mAP": ..., "mAP50": ..., "precision": ..., "recall": ...}
dict with keys: mAP, mAP50, precision, recall
"""
if self.valset is None:
return {}
@@ -67,46 +67,47 @@ class FedYoloServer(object):
collate_fn=Dataset.collate_fn,
)
self.model.to(self._device).eval().half()
dev = self._device
# move to device for eval; keep in float32 for stability
self.model.eval().to(dev).float()
iou_v = torch.linspace(0.5, 0.95, 10).to(self._device) # IoU thresholds
iou_v = torch.linspace(0.5, 0.95, 10, device=dev)
n_iou = iou_v.numel()
metrics = []
for samples, targets in loader:
samples = samples.to(self._device).half() / 255.0
samples = samples.to(dev, non_blocking=True).float() / 255.0
_, _, h, w = samples.shape
scale = torch.tensor((w, h, w, h)).to(self._device)
scale = torch.tensor((w, h, w, h), device=dev)
outputs = self.model(samples)
outputs = util.non_max_suppression(outputs)
for i, output in enumerate(outputs):
idx = targets["idx"] == i
cls = targets["cls"][idx].to(self._device)
box = targets["box"][idx].to(self._device)
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=self._device)
cls = targets["cls"][idx].to(dev)
box = targets["box"][idx].to(dev)
metric = torch.zeros((output.shape[0], n_iou), dtype=torch.bool, device=dev)
if output.shape[0] == 0:
if cls.shape[0]:
metrics.append((metric, *torch.zeros((2, 0), device=self._device), cls.squeeze(-1)))
metrics.append((metric, *torch.zeros((2, 0), device=dev), cls.squeeze(-1)))
continue
if cls.shape[0]:
cls_tensor = cls if isinstance(cls, torch.Tensor) else torch.tensor(cls, device=self._device)
if cls_tensor.dim() == 1:
cls_tensor = cls_tensor.unsqueeze(1)
if cls.dim() == 1:
cls = cls.unsqueeze(1)
box_xy = util.wh2xy(box)
if not isinstance(box_xy, torch.Tensor):
box_xy = torch.tensor(box_xy, device=self._device)
target = torch.cat((cls_tensor, box_xy * scale), dim=1)
box_xy = torch.tensor(box_xy, device=dev)
target = torch.cat((cls, box_xy * scale), dim=1)
metric = util.compute_metric(output[:, :6], target, iou_v)
metrics.append((metric, output[:, 4], output[:, 5], cls.squeeze(-1)))
# Compute metrics
if not metrics:
# move back to CPU before returning
self.model.to("cpu").float()
return {"mAP": 0, "mAP50": 0, "precision": 0, "recall": 0}
metrics = [torch.cat(x, dim=0).cpu().numpy() for x in zip(*metrics)]
@@ -115,9 +116,8 @@ class FedYoloServer(object):
else:
prec, rec, map50, mean_ap = 0, 0, 0, 0
# Back to float32 for further training
self.model.float()
# return model to CPU so next agg() stays device-consistent
self.model.to("cpu").float()
return {"mAP": float(mean_ap), "mAP50": float(map50), "precision": float(prec), "recall": float(rec)}
def select_clients(self, connection_ratio=1.0):
@@ -135,53 +135,75 @@ class FedYoloServer(object):
self.n_data += self.client_n_data.get(client_id, 0)
def agg(self):
"""
Aggregate client updates (FedAvg).
Returns:
global_state: aggregated model state dictionary
avg_loss: dict of averaged losses
n_data: total number of data classes samples used in this round
"""
"""Aggregate client updates (FedAvg) on CPU/FP32, preserving non-float buffers."""
if len(self.selected_clients) == 0 or self.n_data == 0:
return self.model.state_dict(), {}, 0
# start from current global model
global_state = self.model.state_dict()
# zero buffer for accumulation
new_state = {k: torch.zeros_like(v, dtype=torch.float32) for k, v in global_state.items()}
# Ensure global model is on CPU for safe load later
self.model.to("cpu")
global_state = self.model.state_dict() # may hold CPU or CUDA refs; were on CPU now
avg_loss = {}
for name in self.selected_clients:
if name not in self.client_state:
total_n = float(self.n_data)
# Prepare accumulators on CPU. For floating tensors, use float32 zeros.
# For non-floating tensors (e.g., BN num_batches_tracked int64), well copy from the first client.
new_state = {}
first_client = None
for cid in self.selected_clients:
if cid in self.client_state:
first_client = cid
break
assert first_client is not None, "No client states available to aggregate."
for k, v in global_state.items():
if v.is_floating_point():
new_state[k] = torch.zeros_like(v.detach().cpu(), dtype=torch.float32)
else:
# For non-float buffers, just copy from the first client (or keep global)
new_state[k] = self.client_state[first_client][k].clone()
# Accumulate floating tensors with weights; keep non-floats as assigned above
for cid in self.selected_clients:
if cid not in self.client_state:
continue
weight = self.client_n_data[name] / self.n_data
weight = self.client_n_data[cid] / total_n
cst = self.client_state[cid]
for k in new_state.keys():
# accumulate in float32 to avoid fp16 issues
new_state[k] += self.client_state[name][k].to(torch.float32) * weight
if new_state[k].is_floating_point():
# cst[k] is CPU; ensure float32 for accumulation
new_state[k].add_(cst[k].to(torch.float32), alpha=weight)
# losses
for k, v in self.client_loss[name].items():
avg_loss[k] = avg_loss.get(k, 0.0) + v * weight
# weighted average losses
for lk, lv in self.client_loss[cid].items():
avg_loss[lk] = avg_loss.get(lk, 0.0) + float(lv) * weight
# Load aggregated state back into the global model (model is on CPU)
with torch.no_grad():
self.model.load_state_dict(new_state, strict=True)
# load aggregated params back into global model
self.model.load_state_dict(new_state, strict=True)
self.round += 1
return self.model.state_dict(), avg_loss, self.n_data
# Return CPU state_dict (good for broadcasting to clients)
return {k: v.clone() for k, v in self.model.state_dict().items()}, avg_loss, int(self.n_data)
def rec(self, name, state_dict, n_data, loss_dict):
"""
Receive local update from a client.
Args:
name: client ID
state_dict: state dictionary of the local model
n_data: number of data samples used in local training
loss_dict: dict of losses from local training
- Store all floating tensors as CPU float32
- Store non-floating tensors (e.g., BN counters) as CPU in original dtype
"""
self.n_data += n_data
self.client_state[name] = {k: v.cpu() for k, v in state_dict.items()}
self.client_n_data[name] = n_data
self.client_loss[name] = loss_dict
safe_state = {}
with torch.no_grad():
for k, v in state_dict.items():
t = v.detach().cpu()
if t.is_floating_point():
t = t.to(torch.float32)
safe_state[k] = t
self.client_state[name] = safe_state
self.client_n_data[name] = int(n_data)
self.client_loss[name] = {k: float(v) for k, v in loss_dict.items()}
def flush(self):
"""Clear stored client updates."""