diff --git a/README.md b/README.md index d543644..bc87619 100644 --- a/README.md +++ b/README.md @@ -19,9 +19,6 @@ nohup bash fed_run.sh 1 > train.log 2>&1 & - Implement FedProx - Implement SCAFFOLD - Implement FedNova -- Add more YOLO versions (e.g., YOLOv8, YOLOv5, etc.) - - Implement YOLOv8 - - Implement YOLOv5 # references [PyTorch Federated Learning](https://github.com/rruisong/pytorch_federated_learning) diff --git a/config/coco_cfg.yaml b/config/coco_cfg.yaml index 6faa286..0141a84 100644 --- a/config/coco_cfg.yaml +++ b/config/coco_cfg.yaml @@ -17,8 +17,8 @@ local_batch_size: 32 # local training batch size val_batch_size: 128 # validation batch size num_workers: 8 # number of data loader workers -min_data: 1700 # minimum number of images per client -max_data: 1800 # maximum number of images per client +min_data: 1800 # minimum number of images per client +max_data: 1900 # maximum number of images per client partition_mode: "overlap" # "overlap" or "disjoint" connection_ratio: 1 # connection ratio, e.g., 1.0 means all clients diff --git a/config/uav_cfg.yaml b/config/uav_cfg.yaml index 74e8f77..119f3bd 100644 --- a/config/uav_cfg.yaml +++ b/config/uav_cfg.yaml @@ -3,22 +3,22 @@ fed_algo: "FedAvg" # federated learning algorithm model_name: "yolo_v11_n" # yolo_v11_n, yolo_v11_t, yolo_v11_s, yolo_v11_m, yolo_v11_l, yolo_v11_x i_seed: 202509 # initial random seed -num_client: 100 # total number of clients -num_round: 500 # total number of communication rounds +num_client: 36 # total number of clients +num_round: 50 # total number of communication rounds num_local_class: 1 # number of classes per client res_root: "results" # root directory for results -dataset_path: "/home/image1325/ssd1/dataset/uav/" +dataset_path: "/mnt/DATA/uav/" # train_txt: "train.txt" # path to training set txt file # val_txt: "val.txt" # path to validation set txt file # test_txt: "test.txt" # path to test set txt file -local_batch_size: 32 # local training batch size -val_batch_size: 16 # validation batch size +local_batch_size: 36 # local training batch size +val_batch_size: 128 # validation batch size -num_workers: 4 # number of data loader workers -min_data: 640 # minimum number of images per client -max_data: 720 # maximum number of images per client +num_workers: 8 # number of data loader workers +min_data: 385 # minimum number of images per client +max_data: 400 # maximum number of images per client partition_mode: "overlap" # "overlap" or "disjoint" connection_ratio: 1 # connection ratio, e.g., 1.0 means all clients