80 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
		
			3.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from utils.fed_util import init_model
 | 
						|
from fed_algo_cs.server_base import test
 | 
						|
import os
 | 
						|
import yaml
 | 
						|
from utils.args import args_parser  # args parser
 | 
						|
from fed_algo_cs.client_base import FedYoloClient  # FedYoloClient
 | 
						|
from fed_algo_cs.server_base import FedYoloServer  # FedYoloServer
 | 
						|
from utils import Dataset  # Dataset
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    if not os.path.exists("model.txt"):
 | 
						|
        # model structure test
 | 
						|
        model = init_model("yolo_v11_n", num_classes=1)
 | 
						|
 | 
						|
        with open("model.txt", "w", encoding="utf-8") as f:
 | 
						|
            print(model, file=f)
 | 
						|
 | 
						|
    if not os.path.exists("model_key_value.txt"):
 | 
						|
        # loop over model key and values
 | 
						|
        with open("model_key_value.txt", "w", encoding="utf-8") as f:
 | 
						|
            for k, v in model.state_dict().items():
 | 
						|
                print(f"{k}: {v.shape}", file=f)
 | 
						|
 | 
						|
    # test agg function
 | 
						|
    # from fed_algo_cs.server_base import FedYoloServer
 | 
						|
    # import torch
 | 
						|
    # import yaml
 | 
						|
 | 
						|
    # with open("./config/coco128_cfg.yaml", "r", encoding="utf-8") as f:
 | 
						|
    #     cfg = yaml.safe_load(f)
 | 
						|
    # # params = dict(cfg)
 | 
						|
 | 
						|
    # server = FedYoloServer(client_list=["c1", "c2", "c3"], model_name="yolo_v11_n", params=cfg)
 | 
						|
    # state1 = {k: torch.ones_like(v) for k, v in server.model.state_dict().items()}
 | 
						|
    # state2 = {k: torch.ones_like(v) * 2 for k, v in server.model.state_dict().items()}
 | 
						|
    # state3 = {k: torch.ones_like(v) * 3 for k, v in server.model.state_dict().items()}
 | 
						|
    # server.rec("c1", state1, n_data=20, loss=0.1)
 | 
						|
    # server.rec("c2", state2, n_data=30, loss=0.2)
 | 
						|
    # server.rec("c3", state3, n_data=50, loss=0.3)
 | 
						|
    # server.select_clients(connection_ratio=1.0)
 | 
						|
    # model_state, avg_loss, n_data = server.agg()
 | 
						|
    # with open("agg_model.txt", "w", encoding="utf-8") as f:
 | 
						|
    #     for k, v in model_state.items():
 | 
						|
    #         print(f"{k}: {v.float().mean()}", file=f)
 | 
						|
    # print(f"avg_loss: {avg_loss}, n_data: {n_data}")
 | 
						|
 | 
						|
    # test single client training (should be the same as standalone training)
 | 
						|
    args = args_parser()
 | 
						|
    with open(args.config, "r", encoding="utf-8") as f:
 | 
						|
        cfg = yaml.safe_load(f)
 | 
						|
    # params = dict(cfg)
 | 
						|
    client = FedYoloClient(name="c1", params=cfg, model_name="yolo_v11_n")
 | 
						|
 | 
						|
    filenames = []
 | 
						|
    data_dir = "/mnt/DATA/COCO128"
 | 
						|
    with open(f"{data_dir}/train.txt") as f:
 | 
						|
        for filename in f.readlines():
 | 
						|
            filename = os.path.basename(filename.rstrip())
 | 
						|
            filenames.append(f"{data_dir}/images/train2017/" + filename)
 | 
						|
 | 
						|
    client.load_trainset(train_dataset=filenames)
 | 
						|
    model_state, n_data, avg_loss = client.train(args=args)
 | 
						|
 | 
						|
    model = init_model("yolo_v11_n", num_classes=80)
 | 
						|
    model.load_state_dict(model_state)
 | 
						|
 | 
						|
    valset = Dataset(
 | 
						|
        filenames=filenames,
 | 
						|
        input_size=640,
 | 
						|
        params=cfg,
 | 
						|
        augment=False,
 | 
						|
    )
 | 
						|
    if valset is not None:
 | 
						|
        precision, recall, map50, map = test(valset=valset, params=cfg, model=model, batch_size=128)
 | 
						|
        print(
 | 
						|
            f"precision: {precision}, recall: {recall}, map50: {map50}, map: {map}, loss: {avg_loss}, n_data: {n_data}"
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        raise ValueError("valset is None, please provide a valid valset in config file.")
 |