Graduation-Project/image_fusion/Image_Registration_test.py

244 lines
8.4 KiB
Python
Raw Normal View History

2025-04-18 14:15:37 +00:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time :
# @Author :
# @File : Image_Registration_test.py
import time
import cv2
import numpy as np
def sift_registration(img1, img2):
img1gray = cv2.normalize(img1, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)
img2gray = img2
sift = cv2.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
good = []
pts1 = []
pts2 = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.75 * n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
MIN_MATCH_COUNT = 4
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
M = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=np.float64)
if M is None:
M = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=np.float64)
return 1, M[0], len(pts2)
# 裁剪线性RGB对比度拉伸去掉2%百分位以下的数去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
"""
:param image:
:param truncated_value:
:param maxout:
:param min_out:
:return:
"""
def gray_process(gray, maxout=maxout, minout=min_out):
truncated_down = np.percentile(gray, truncated_value)
truncated_up = np.percentile(gray, 100 - truncated_value)
gray_new = ((maxout - minout) / (truncated_up - truncated_down)) * gray
gray_new[gray_new < minout] = minout
gray_new[gray_new > maxout] = maxout
return np.uint8(gray_new)
(b, g, r) = cv2.split(image)
b = gray_process(b)
g = gray_process(g)
r = gray_process(r)
result = cv2.merge((b, g, r)) # 合并每一个通道
return result
# RGB图片配准函数采用白天的可见光与红外灰度图计算两者Surf共同特征点之间的仿射矩阵。
def Images_matching(img_base, img_target):
"""
:param img_base:
:param img_target:匹配图像
:return: 返回仿射矩阵
"""
start = time.time()
orb = cv2.ORB_create()
img_base = cv2.cvtColor(img_base, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
# 使用sift算子计算特征点和特征点周围的特征向量
st1 = time.time()
kp1, des1 = sift.detectAndCompute(img_base, None) # 1136 1136, 64
kp2, des2 = sift.detectAndCompute(img_target, None)
en1 = time.time()
# print(en1 - st1, "特征提取")
# 进行KNN特征匹配
# FLANN_INDEX_KDTREE = 0 # 建立FLANN匹配器的参数
# indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) # 配置索引密度树的数量为5
# searchParams = dict(checks=50) # 指定递归次数
# flann = cv2.FlannBasedMatcher(indexParams, searchParams) # 建立匹配器
# matches = flann.knnMatch(des1, des2, k=2) # 得出匹配的关键点 list: 1136
# FLANN_INDEX_KDTREE = 1
# index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
# search_params = dict(checks=50)
# flann = cv2.FlannBasedMatcher(index_params, search_params)
# matches = flann.knnMatch(des1, des2, k=2)
st2 = time.time()
matcher = cv2.BFMatcher()
matches = matcher.knnMatch(des1, des2, k=2)
de2 = time.time()
# print(de2 - st2, "特征匹配")
good = []
# 提取优秀的特征点
for m, n in matches:
if m.distance < 0.75 * n.distance: # 如果第一个邻近距离比第二个邻近距离的0.7倍小,则保留
good.append(m) # 134
src_pts = np.array([kp1[m.queryIdx].pt for m in good]) # 查询图像的特征描述子索引 # 134, 2
dst_pts = np.array([kp2[m.trainIdx].pt for m in good]) # 训练(模板)图像的特征描述子索引
if len(src_pts) <= 4:
return 0, None, 0
else:
# print(len(dst_pts), len(src_pts), "配准坐标点")
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
end = time.time()
times = end - start
# print("配准时间", times)
return 1, H[0], len(dst_pts)
#
def fusions(img_vl, img_inf):
"""
:param img_vl: 原图像
:param img_inf: 红外图像
:return:
"""
img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_RGB2YUV)
y, u, v = cv2.split(img_YUV) # 分离通道,获取Y通道
Yf = y * 0.5 + img_inf * 0.5
Yf = Yf.astype(np.uint8)
fusion = cv2.cvtColor(cv2.merge((Yf, u, v)), cv2.COLOR_YUV2RGB)
return fusion
def removeBlackBorder(gray):
"""
移除缝合后的图像的多余黑边
输入
image三维numpy矩阵待处理图像
输出
裁剪后的图像
"""
threshold = 40 # 阈值
nrow = gray.shape[0] # 获取图片尺寸
ncol = gray.shape[1]
rowc = gray[:, int(1 / 2 * nrow)] # 无法区分黑色区域超过一半的情况
colc = gray[int(1 / 2 * ncol), :]
rowflag = np.argwhere(rowc > threshold)
colflag = np.argwhere(colc > threshold)
left, bottom, right, top = rowflag[0, 0], colflag[-1, 0], rowflag[-1, 0], colflag[0, 0]
# cv2.imshow('name', gray[left:right, top:bottom]) # 效果展示
cv2.waitKey(1)
return gray[left:right, top:bottom], left, right, top, bottom
def main(matchimg_vi, matchimg_in):
"""
:param matchimg_vi: 可见光图像
:param matchimg_in: 红外图像
:return: 融合好的图像
"""
orimg_vi = matchimg_vi
orimg_in = matchimg_in
h, w = orimg_vi.shape[:2] # 480 640
flag, H, dot = Images_matching(matchimg_vi, matchimg_in) # (3, 3)//获取对应的配准坐标点
if flag == 0:
return 0, 0, 0
else:
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
# matched_ni,left,right,top,bottom=removeBlackBorder(matched_ni)
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
fusion = fusions(orimg_vi, matched_ni)
# print(fusion.shape)
return 1, fusion, dot
if __name__ == '__main__':
time_all = 0
dots = 0
i = 0
fourcc = cv2.VideoWriter_fourcc(*'XVID')
capture = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/infrared.mp4")
capture2 = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/visible.mp4")
fps = capture.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('output2.mp4', fourcc, fps, (640, 480))
# 持续读取摄像头数据
while True:
# 读取
start = time.time()
read_code, frame = capture.read()
read_code2, frame2 = capture2.read()
if not read_code:
break
i += 1
# frame = cv2.resize(frame, (1920, 1080))
# frame2 = cv2.resize(frame2, (640, 512))
# frame =frame[80:512, 0:640]
# frame2=frame2[200:1080, 0:1920]
cv2.imshow("color", frame2)
cv2.imshow("gray", frame)
# 按 'q' 键退出循环
if cv2.waitKey(25) & 0xFF == ord('q'):
break
h1, w1 = frame.shape[:2]
h2, w2 = frame2.shape[:2]
print(h1, w1, h2, w2)
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
flag, fusion, dot = main(frame2, frame_gray)
if flag == 0:
continue
end = time.time()
# print(dot)
dots += dot
cv2.imshow("fusion", fusion)
# cv2.imshow("color", frame2)
# cv2.imshow("gray", frame)
out.write(fusion)
use_time = end - start
time_all += use_time
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
capture.release()
capture2.release()
cv2.destroyAllWindows()
ave = time_all / i
print(ave, "平均时间")
cv2.destroyAllWindows()