图像融合模块

This commit is contained in:
myh 2025-04-18 22:15:37 +08:00
parent 1cfc280f34
commit ca275ba74b
3 changed files with 390 additions and 0 deletions

View File

@ -0,0 +1,243 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time :
# @Author :
# @File : Image_Registration_test.py
import time
import cv2
import numpy as np
def sift_registration(img1, img2):
img1gray = cv2.normalize(img1, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)
img2gray = img2
sift = cv2.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
good = []
pts1 = []
pts2 = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.75 * n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
MIN_MATCH_COUNT = 4
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
M = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=np.float64)
if M is None:
M = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=np.float64)
return 1, M[0], len(pts2)
# 裁剪线性RGB对比度拉伸去掉2%百分位以下的数去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
"""
:param image:
:param truncated_value:
:param maxout:
:param min_out:
:return:
"""
def gray_process(gray, maxout=maxout, minout=min_out):
truncated_down = np.percentile(gray, truncated_value)
truncated_up = np.percentile(gray, 100 - truncated_value)
gray_new = ((maxout - minout) / (truncated_up - truncated_down)) * gray
gray_new[gray_new < minout] = minout
gray_new[gray_new > maxout] = maxout
return np.uint8(gray_new)
(b, g, r) = cv2.split(image)
b = gray_process(b)
g = gray_process(g)
r = gray_process(r)
result = cv2.merge((b, g, r)) # 合并每一个通道
return result
# RGB图片配准函数采用白天的可见光与红外灰度图计算两者Surf共同特征点之间的仿射矩阵。
def Images_matching(img_base, img_target):
"""
:param img_base:
:param img_target:匹配图像
:return: 返回仿射矩阵
"""
start = time.time()
orb = cv2.ORB_create()
img_base = cv2.cvtColor(img_base, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
# 使用sift算子计算特征点和特征点周围的特征向量
st1 = time.time()
kp1, des1 = sift.detectAndCompute(img_base, None) # 1136 1136, 64
kp2, des2 = sift.detectAndCompute(img_target, None)
en1 = time.time()
# print(en1 - st1, "特征提取")
# 进行KNN特征匹配
# FLANN_INDEX_KDTREE = 0 # 建立FLANN匹配器的参数
# indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) # 配置索引密度树的数量为5
# searchParams = dict(checks=50) # 指定递归次数
# flann = cv2.FlannBasedMatcher(indexParams, searchParams) # 建立匹配器
# matches = flann.knnMatch(des1, des2, k=2) # 得出匹配的关键点 list: 1136
# FLANN_INDEX_KDTREE = 1
# index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
# search_params = dict(checks=50)
# flann = cv2.FlannBasedMatcher(index_params, search_params)
# matches = flann.knnMatch(des1, des2, k=2)
st2 = time.time()
matcher = cv2.BFMatcher()
matches = matcher.knnMatch(des1, des2, k=2)
de2 = time.time()
# print(de2 - st2, "特征匹配")
good = []
# 提取优秀的特征点
for m, n in matches:
if m.distance < 0.75 * n.distance: # 如果第一个邻近距离比第二个邻近距离的0.7倍小,则保留
good.append(m) # 134
src_pts = np.array([kp1[m.queryIdx].pt for m in good]) # 查询图像的特征描述子索引 # 134, 2
dst_pts = np.array([kp2[m.trainIdx].pt for m in good]) # 训练(模板)图像的特征描述子索引
if len(src_pts) <= 4:
return 0, None, 0
else:
# print(len(dst_pts), len(src_pts), "配准坐标点")
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
end = time.time()
times = end - start
# print("配准时间", times)
return 1, H[0], len(dst_pts)
#
def fusions(img_vl, img_inf):
"""
:param img_vl: 原图像
:param img_inf: 红外图像
:return:
"""
img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_RGB2YUV)
y, u, v = cv2.split(img_YUV) # 分离通道,获取Y通道
Yf = y * 0.5 + img_inf * 0.5
Yf = Yf.astype(np.uint8)
fusion = cv2.cvtColor(cv2.merge((Yf, u, v)), cv2.COLOR_YUV2RGB)
return fusion
def removeBlackBorder(gray):
"""
移除缝合后的图像的多余黑边
输入
image三维numpy矩阵待处理图像
输出
裁剪后的图像
"""
threshold = 40 # 阈值
nrow = gray.shape[0] # 获取图片尺寸
ncol = gray.shape[1]
rowc = gray[:, int(1 / 2 * nrow)] # 无法区分黑色区域超过一半的情况
colc = gray[int(1 / 2 * ncol), :]
rowflag = np.argwhere(rowc > threshold)
colflag = np.argwhere(colc > threshold)
left, bottom, right, top = rowflag[0, 0], colflag[-1, 0], rowflag[-1, 0], colflag[0, 0]
# cv2.imshow('name', gray[left:right, top:bottom]) # 效果展示
cv2.waitKey(1)
return gray[left:right, top:bottom], left, right, top, bottom
def main(matchimg_vi, matchimg_in):
"""
:param matchimg_vi: 可见光图像
:param matchimg_in: 红外图像
:return: 融合好的图像
"""
orimg_vi = matchimg_vi
orimg_in = matchimg_in
h, w = orimg_vi.shape[:2] # 480 640
flag, H, dot = Images_matching(matchimg_vi, matchimg_in) # (3, 3)//获取对应的配准坐标点
if flag == 0:
return 0, 0, 0
else:
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
# matched_ni,left,right,top,bottom=removeBlackBorder(matched_ni)
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
fusion = fusions(orimg_vi, matched_ni)
# print(fusion.shape)
return 1, fusion, dot
if __name__ == '__main__':
time_all = 0
dots = 0
i = 0
fourcc = cv2.VideoWriter_fourcc(*'XVID')
capture = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/infrared.mp4")
capture2 = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/visible.mp4")
fps = capture.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('output2.mp4', fourcc, fps, (640, 480))
# 持续读取摄像头数据
while True:
# 读取
start = time.time()
read_code, frame = capture.read()
read_code2, frame2 = capture2.read()
if not read_code:
break
i += 1
# frame = cv2.resize(frame, (1920, 1080))
# frame2 = cv2.resize(frame2, (640, 512))
# frame =frame[80:512, 0:640]
# frame2=frame2[200:1080, 0:1920]
cv2.imshow("color", frame2)
cv2.imshow("gray", frame)
# 按 'q' 键退出循环
if cv2.waitKey(25) & 0xFF == ord('q'):
break
h1, w1 = frame.shape[:2]
h2, w2 = frame2.shape[:2]
print(h1, w1, h2, w2)
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
flag, fusion, dot = main(frame2, frame_gray)
if flag == 0:
continue
end = time.time()
# print(dot)
dots += dot
cv2.imshow("fusion", fusion)
# cv2.imshow("color", frame2)
# cv2.imshow("gray", frame)
out.write(fusion)
use_time = end - start
time_all += use_time
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
capture.release()
capture2.release()
cv2.destroyAllWindows()
ave = time_all / i
print(ave, "平均时间")
cv2.destroyAllWindows()

View File

@ -0,0 +1,147 @@
# -*- coding: utf-8 -*-
# @Time :
# @Author :
import cv2
import numpy as np
sift = cv2.SIFT_create()
def compuerSift2GetPts(img1, img2):
# sift 查找关键点,关键点 And 描述
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
matcher = cv2.BFMatcher()
raw_matches = matcher.knnMatch(des1, des2, k=2)
good_matches = []
ratio = 0.75
for m1, m2 in raw_matches:
# 如果最接近和次接近的比值大于一个既定的值那么我们保留这个最接近的值认为它和其匹配的点为good_match
if m1.distance < ratio * m2.distance:
good_matches.append([m1])
matches = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good_matches, None, flags=2)
ptsA = np.float32([kp1[m[0].queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
ptsB = np.float32([kp2[m[0].trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
ransacReprojThreshold = 4
# 单应性矩阵可以将一张图通过旋转、变换等方式与另一张图对齐
# print(len(ptsA), len(ptsB))
if len(ptsA) == 0: return ptsA, ptsB, 0
H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
cv2.imshow("matcher", matches)
cv2.waitKey(100)
return ptsA, ptsB, 1
def findBestDistanceAndPts(ptsA, ptsB):
x_dct = {}
y_dct = {}
best_x, best_y = int(ptsA[0][0][0] - ptsB[0][0][0]), int(ptsA[0][0][1] - ptsB[0][0][1])
x_cnt, y_cnt = 0, 0
for i in range(len(ptsA)):
# print(ptsA[i], ' ', ptsB[i])
x_dis = int(ptsA[i][0][0] - ptsB[i][0][0])
y_dis = int(ptsA[i][0][1] - ptsB[i][0][1])
# print(x_dis)
if x_dis in x_dct:
x_dct.update({x_dis: int(x_dct.get(x_dis) + 1)})
if x_dct.get(x_dis) > x_cnt:
best_x = x_dis
x_cnt = x_dct.get(x_dis)
# print(x_dct.get(x_dis))
else:
x_dct.update({x_dis: 1})
# print(x_dct.get(x_dis))
# print(y_dis)
if y_dis in y_dct:
y_dct.update({y_dis: int(y_dct.get(y_dis) + 1)})
if y_dct.get(y_dis) > y_cnt:
best_y = y_dis
y_cnt = y_dct.get(y_dis)
# print(y_dct.get(y_dis))
else:
y_dct.update({y_dis: 1})
# print(y_dct.get(y_dis))
print(best_x, best_y)
pt = []
ptb = []
for i in range(len(ptsA)):
x_dis = int(ptsA[i][0][0] - ptsB[i][0][0])
y_dis = int(ptsA[i][0][1] - ptsB[i][0][1])
if abs(best_x - x_dis) <= 0:
pt.append([ptsA[i][0][0], ptsA[i][0][1]])
# print(pt)
return pt, best_x, best_y
def minDistanceHasXy(ptsA, ptsB):
dct = {}
cnt = 0
best = 's'
for i in range(len(ptsA)):
disx = int(ptsA[i][0][0] - ptsB[i][0][0] + 0.5)
disy = int(ptsA[i][0][1] - ptsB[i][0][1] + 0.5)
s = str(disx) + ',' + str(disy)
# print(s)
if s in dct:
dct.updata({s: int(dct.get(s) + 1)})
if dct.get(s) >= cnt:
cnt = dct.get(s)
best = s
print(s)
else:
dct.update({s: int(1)})
for i, j in dct.items():
print(i, j)
print(best)
def detectImg(img1, img2, pta, best_x, best_y):
# print(pta)
min_x = int(min(x[0] for x in pta))
max_x = int(max(x[0] for x in pta))
min_y = int(min(x[1] for x in pta))
max_y = int(max(x[1] for x in pta))
# print(min_x, max_x)
# print(min_x - best_x, max_x - best_x)
# print(min_y, max_y)
# print(min_y - best_y, max_y - best_y)
newimg1 = img1[min_y: max_y, min_x: max_x]
newimg2 = img2[min_y - best_y: max_y - best_y, min_x - best_x: max_x - best_x]
# cv2.imshow("newimg1", newimg1)
# cv2.imshow("newimg2", newimg2)
# cv2.waitKey(0)
return newimg1, newimg2
if __name__ == '__main__':
j = 0
for i in range(20, 4771, 1):
print(i)
path1 = './data/907dat/gray/camera1-' + str(i) + '.png'
path2 = './data/907dat/color/camera0-' + str(i) + '.png'
img1 = cv2.imread(path1)
img2 = cv2.imread(path2)
if (img1 is None or img2 is None): continue
PtsA, PtsB, f = compuerSift2GetPts(img1, img2)
if (f == 0): continue
pt, best_x, best_y = findBestDistanceAndPts(PtsA, PtsB)
newimg1, newimg2 = detectImg(img1, img2, pt, best_x, best_y)
if newimg1.shape[0] < 10 or newimg1.shape[1] < 10: continue
print(newimg1.shape, newimg2.shape)
# newimg1 = cv2.resize(newimg1, (320, 240))
# newimg2 = cv2.resize(newimg2, (320, 240))
wirtePath1 = './result/dat_result_2/gray/camera1-' + str(j) + '.png'
wirtePath2 = './result/dat_result_2/color/camera0-' + str(j) + '.png'
if newimg1.shape[0] > 255 and newimg1.shape[1] > 255 and newimg1.shape == newimg2.shape:
# cv2.imwrite(wirtePath1, newimg1)
# cv2.imwrite(wirtePath2, newimg2)
j += 1
cv2.imshow("newimg1", newimg1)
cv2.imshow("newimg2", newimg2)
cv2.waitKey()
print(j)
pass

0
image_fusion/__init__.py Normal file
View File