联邦学习模块

This commit is contained in:
myh 2025-04-18 22:15:25 +08:00
parent f5e527e02e
commit 1cfc280f34
6 changed files with 797 additions and 0 deletions

View File

View File

@ -0,0 +1,155 @@
import argparse
import torch
import os
from torch import optim
from torch.optim import lr_scheduler
from util.data_utils import get_data
from util.model_utils import get_model
from util.train_utils import train_model, validate_model, update_model_weights, v3_update_model_weights
def main(args):
device = torch.device(args.device)
# 数据加载器
loader1, loader2, loader3, subset_len, val_loader = get_data(
args.train_path, args.val_path, args.batch_size, args.number_workers
)
# 模型 get_model(name='ResNet', number_class=2, device=device, resnet_type='resnet18')
model_a = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
model_b = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
model_c = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
# 添加全局模型
global_model = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
if args.resume_training:
model_a.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_a.pth')))
model_b.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_b.pth')))
model_c.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_c.pth')))
print("已加载之前保存的模型参数继续训练")
# 优化器和损失函数
criterion = torch.nn.BCEWithLogitsLoss().to(device)
optimizer_a = optim.Adam(model_a.parameters(), lr=args.lr, weight_decay=5e-4)
optimizer_b = optim.Adam(model_b.parameters(), lr=args.lr, weight_decay=5e-4)
optimizer_c = optim.Adam(model_c.parameters(), lr=args.lr, weight_decay=5e-4)
scheduler_a = lr_scheduler.ReduceLROnPlateau(optimizer_a, mode='min', factor=0.5, patience=2, verbose=True)
scheduler_b = lr_scheduler.ReduceLROnPlateau(optimizer_b, mode='min', factor=0.5, patience=2, verbose=True)
scheduler_c = lr_scheduler.ReduceLROnPlateau(optimizer_c, mode='min', factor=0.5, patience=2, verbose=True)
# 初始化最优验证损失和模型路径
best_val_loss_a = float('inf')
best_val_loss_b = float('inf')
best_val_loss_c = float('inf')
save_dir = args.save_dir
os.makedirs(save_dir, exist_ok=True)
# 训练与验证
for epoch in range(args.epochs):
print(f'Epoch {epoch + 1}/{args.epochs}')
# 训练模型
loss_a = train_model(device, model_a, loader1, optimizer_a, criterion, epoch, 'model_a')
loss_b = train_model(device, model_b, loader2, optimizer_b, criterion, epoch, 'model_b')
loss_c = train_model(device, model_c, loader3, optimizer_c, criterion, epoch, 'model_c')
# 验证模型
val_loss_a, val_acc_a, val_auc_a = validate_model(device, model_a, val_loader, criterion, epoch, 'model_a')
val_loss_b, val_acc_b, val_auc_b = validate_model(device, model_b, val_loader, criterion, epoch, 'model_b')
val_loss_c, val_acc_c, val_auc_c = validate_model(device, model_c, val_loader, criterion, epoch, 'model_c')
if args.save_model and val_loss_a < best_val_loss_a:
best_val_loss_a = val_loss_a
torch.save(model_a.state_dict(), os.path.join(save_dir, 'best_model_a.pth'))
print(f"Best model_a saved with val_loss: {best_val_loss_a:.4f}")
if args.save_model and val_loss_b < best_val_loss_b:
best_val_loss_b = val_loss_b
torch.save(model_b.state_dict(), os.path.join(save_dir, 'best_model_b.pth'))
print(f"Best model_b saved with val_loss: {best_val_loss_b:.4f}")
if args.save_model and val_loss_c < best_val_loss_c:
best_val_loss_c = val_loss_c
torch.save(model_c.state_dict(), os.path.join(save_dir, 'best_model_c.pth'))
print(f"Best model_c saved with val_loss: {best_val_loss_c:.4f}")
print(
f'Model A - Loss: {loss_a:.4f}, Val Loss: {val_loss_a:.4f}, Val Acc: {val_acc_a:.4f}, AUC: {val_auc_a:.4f}')
print(
f'Model B - Loss: {loss_b:.4f}, Val Loss: {val_loss_b:.4f}, Val Acc: {val_acc_b:.4f}, AUC: {val_auc_b:.4f}')
print(
f'Model C - Loss: {loss_c:.4f}, Val Loss: {val_loss_c:.4f}, Val Acc: {val_acc_c:.4f}, AUC: {val_auc_c:.4f}')
# 更新模型 A 的权重,每 3 轮 1
val_acc_a, val_auc_a, val_acc_a_threshold = v3_update_model_weights(
epoch=epoch,
model_to_update=model_a,
other_models=[model_a, model_b, model_c],
global_model=global_model,
losses=[loss_a, loss_b, loss_c],
val_loader=val_loader,
device=device,
val_auc_threshold=val_auc_a,
validate_model=validate_model,
criterion=criterion,
update_frequency=1
)
# 更新模型 B 的权重,每 5 轮1
val_acc_b, val_auc_b, val_acc_b_threshold = v3_update_model_weights(
epoch=epoch,
model_to_update=model_b,
other_models=[model_a, model_b, model_c],
global_model=global_model,
losses=[loss_a, loss_b, loss_c],
val_loader=val_loader,
device=device,
val_auc_threshold=val_auc_b,
validate_model=validate_model,
criterion=criterion,
update_frequency=1
)
# 更新模型 C 的权重,每 2 轮 1
val_acc_c, val_auc_c, val_acc_c_threshold = v3_update_model_weights(
epoch=epoch,
model_to_update=model_c,
other_models=[model_a, model_b, model_c],
global_model=global_model,
losses=[loss_a, loss_b, loss_c],
val_loader=val_loader,
device=device,
val_auc_threshold=val_auc_c,
validate_model=validate_model,
criterion=criterion,
update_frequency=1
)
print("Training complete! Best models saved.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='resnet18_psa', help='Model name')
parser.add_argument('--deep_backbone', type=str, default='*', help='deeplab backbone')
parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/train')
parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/val')
# parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/train')
# parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/val')
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--number_workers', type=int, default=8)
parser.add_argument('--number_class', type=int, default=1)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--lr', type=float, default=0.00005)
parser.add_argument('--save_dir', type=str,
default='/media/terminator/实验&代码/yhs/output/work2/resnet18_psa/c40/total/e10',
help='Directory to save best models')
parser.add_argument('--save_model', type=bool, default=True, help='是否保存最优模型')
parser.add_argument('--resume_training', type=bool, default=False, help='是否从保存的模型参数继续训练')
args = parser.parse_args()
main(args)

View File

View File

@ -0,0 +1,217 @@
import os
from PIL import Image
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset, random_split
from collections import Counter
from torch.utils.data import DataLoader, Subset
from torchvision import transforms, datasets
import os
from sklearn.model_selection import train_test_split
class CustomImageDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.image_paths = []
self.labels = []
# 遍历 root_dir 下的子文件夹 0 和 1
for label in [0, 1]:
folder_path = os.path.join(root_dir, str(label))
if os.path.isdir(folder_path):
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
self.image_paths.append(img_path)
self.labels.append(label)
# 打印用于调试的图像路径和标签
# print("Loaded image paths and labels:")
# for path, label in zip(self.image_paths[:5], self.labels[:5]):
# print(f"Path: {path}, Label: {label}")
# print(f"Total samples: {len(self.image_paths)}\n")
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
label = self.labels[idx]
image = Image.open(img_path).convert("RGB")
if self.transform:
image = self.transform(image)
return image, label
def get_test_data(test_image_path, batch_size, nw):
data_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# test_dataset = datasets.ImageFolder(root=test_image_path, transform=data_transform)
test_dataset = CustomImageDataset(root_dir=test_image_path, transform=data_transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=nw)
return test_loader
def get_Onedata(train_image_path, val_image_path, batch_size, num_workers):
"""
加载完整的训练数据集和验证数据集
"""
data_transform = {
"train": transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# 创建训练和验证数据集
train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"])
val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"])
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_loader, val_loader
def get_data(train_image_path, val_image_path, batch_size, num_workers):
data_transform = {
"train": transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"test": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"])
val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"])
# 切分数据集为三个等分
train_len = (len(train_dataset) // 3) * 3
train_dataset_truncated = torch.utils.data.Subset(train_dataset, range(train_len))
subset_len = train_len // 3
dataset1, dataset2, dataset3 = random_split(train_dataset_truncated, [subset_len] * 3)
loader1 = DataLoader(dataset1, batch_size=batch_size, shuffle=True, num_workers=num_workers)
loader2 = DataLoader(dataset2, batch_size=batch_size, shuffle=True, num_workers=num_workers)
loader3 = DataLoader(dataset3, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return loader1, loader2, loader3, subset_len, val_loader
def get_Fourdata(train_path, val_path, batch_size, num_workers):
"""
加载训练集和验证集
包括 4 个客户端验证集dff2ffsnt 1 个全局验证集
Args:
train_path (str): 训练数据路径
val_path (str): 验证数据路径
batch_size (int): 批量大小
num_workers (int): DataLoader 的工作线程数
Returns:
tuple: 包含 4 个客户端训练和验证加载器以及全局验证加载器
"""
# 数据预处理
train_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义 4 个客户端数据集路径
client_names = ['df', 'f2f', 'fs', 'nt']
client_train_loaders = []
client_val_loaders = []
for client in client_names:
client_train_path = os.path.join(train_path, client)
client_val_path = os.path.join(val_path, client)
# 加载客户端训练数据
train_dataset = datasets.ImageFolder(root=client_train_path, transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
# 加载客户端验证数据
val_dataset = datasets.ImageFolder(root=client_val_path, transform=val_transform)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
client_train_loaders.append(train_loader)
client_val_loaders.append(val_loader)
# 全局验证集
global_val_dataset = datasets.ImageFolder(root=val_path, transform=val_transform)
global_val_loader = DataLoader(global_val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return (*client_train_loaders, *client_val_loaders, global_val_loader)
def main():
# 设置参数
train_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/train"
val_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/val"
batch_size = 4
num_workers = 2
# 获取数据加载器
loader1, loader2, loader3, subset_len, val_loader = get_data(train_image_path, val_image_path, batch_size,
num_workers)
# 统计标签数量和类型
train_labels = []
for dataset in [loader1, loader2, loader3]:
for _, labels in dataset:
train_labels.extend(labels.tolist())
val_labels = []
for _, labels in val_loader:
val_labels.extend(labels.tolist())
# 使用 Counter 统计标签数量
train_label_counts = Counter(train_labels)
val_label_counts = Counter(val_labels)
# 打印统计结果
print("Training Dataset - Label Counts:", train_label_counts)
print("Validation Dataset - Label Counts:", val_label_counts)
print("Label Types in Training:", set(train_labels))
print("Label Types in Validation:", set(val_labels))
if __name__ == "__main__":
main()

View File

@ -0,0 +1,57 @@
import torch
from torch import nn
from torchvision import models
from Deeplab.deeplab import DeepLab_F
from Deeplab.resnet_psa import BasicBlockWithPSA
from Deeplab.resnet_psa_v2 import ResNet
from model_base.efNet_base_model import DeepLab
from model_base.efficientnet import EfficientNet
from model_base.resnet_more import CustomResNet
from model_base.xcption import Xception
def get_model(name, number_class, device, backbone):
"""
根据指定的模型名称加载模型并根据任务类别数调整最后的分类层
Args:
name (str): 模型名称 ('Vgg', 'ResNet', 'EfficientNet', 'Xception')
number_class (int): 分类类别数
device (torch.device): 设备 ('cuda' or 'cpu')
resnet_type (str): ResNet类型 ('resnet18', 'resnet34', 'resnet50', 'resnet101', etc.)
Returns:
nn.Module: 经过修改的模型
"""
if name == 'Vgg':
model = models.vgg16_bn(pretrained=True).to(device)
model.classifier[6] = nn.Linear(model.classifier[6].in_features, number_class)
elif name == 'ResNet18':
model = CustomResNet(resnet_type='resnet18', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet34':
model = CustomResNet(resnet_type='resnet34', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet50':
model = CustomResNet(resnet_type='resnet50', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet101':
model = CustomResNet(resnet_type='resnet101', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet152':
model = CustomResNet(resnet_type='resnet152', num_classes=number_class, pretrained=True).to(device)
elif name == 'EfficientNet':
# 使用自定义的 DeepLab 类加载 EfficientNet
model = DeepLab(backbone='efficientnet', num_classes=number_class).to(device)
elif name == 'Xception':
model = Xception(
in_planes=3,
num_classes=number_class,
pretrained=True,
pretrained_path="/home/terminator/1325/yhs/fedLeaning/pre_model/xception-43020ad28.pth"
).to(device)
elif name == 'DeepLab':
# 使用自定义的 DeepLab 类加载 EfficientNet
model = DeepLab_F(num_classes=1, backbone=backbone).to(device)
elif name == 'resnet18_psa':
model = ResNet(BasicBlockWithPSA, [2, 2, 2, 2], number_class)
else:
raise ValueError(f"Model {name} is not supported.")
return model

View File

@ -0,0 +1,368 @@
import numpy as np
import torch
from tqdm import tqdm
from sklearn.metrics import roc_auc_score, accuracy_score
import copy
import torch.nn.functional as F
import random
def train_deepmodel(device, model, loader, optimizer, criterion, epoch, model_name):
model.train()
running_loss = 0.0
corrects = 0.0
alpha = 1
beta = 0.1
for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
optimizer.zero_grad()
outputs, re_img = model(inputs)
loss = criterion(outputs.squeeze(), labels.float())
loss_F1 = F.l1_loss(re_img, inputs)
loss = alpha * loss + beta * loss_F1
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(loader)
print(f'{model_name} Training Loss: {avg_loss:.4f}')
return avg_loss
def validate_deepmodel(device, model, loader, criterion, epoch, model_name):
model.eval()
running_loss = 0.0
correct, total = 0, 0
all_labels, all_preds = [], []
val_corrects = 0.0
alpha = 1
beta = 0.1
with torch.no_grad():
for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
outputs, re_img = model(inputs)
# 将 logits 转换为预测
predicted = torch.sigmoid(outputs).data
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# loss = criterion(outputs.squeeze(), labels.float())
loss = criterion(outputs.squeeze(), labels.float())
loss_F1 = F.l1_loss(re_img, inputs)
loss = alpha * loss + beta * loss_F1
running_loss += loss.item()
auc = roc_auc_score(all_labels, all_preds)
predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组
acc = accuracy_score(all_labels, predicted_labels)
avg_loss = running_loss / len(loader)
print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}')
return avg_loss, acc, auc
def test_deepmodel(device, model, loader):
model.eval()
all_labels, all_preds = [], []
with torch.no_grad():
for inputs, labels in tqdm(loader, desc=f'Testing', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
outputs, re_img = model(inputs)
predicted = torch.sigmoid(outputs).data # 将 logits 转换为预测
# 收集预测值和真实标签
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# 将预测值转换为二值标签
predicted_labels = (np.array(all_preds) >= 0.5).astype(int)
# 计算准确率和AUC
acc = accuracy_score(all_labels, predicted_labels)
auc = roc_auc_score(all_labels, all_preds)
print(f'Test Accuracy: {acc:.4f}, Test AUC: {auc:.4f}')
return acc, auc
# def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
# model.train()
# running_loss = 0.0
# for i, (inputs, labels) in enumerate(tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch')):
# inputs, labels = inputs.float().to(device), labels.float().to(device) # 确保数据格式正确
# optimizer.zero_grad()
#
# outputs = model(inputs)
# loss = criterion(outputs.squeeze(), labels)
#
# # 随机打印部分输出和标签,检查格式
# if i % 10 == 0: # 每100个批次打印一次
# print(f"Batch {i} - Sample Output: {outputs[0].item():.4f}, Sample Label: {labels[0].item()}")
#
# # 检查损失值是否异常
# if loss.item() < 0:
# print(f"Warning: Negative loss detected at batch {i}. Loss: {loss.item()}")
#
# loss.backward()
# optimizer.step()
#
# running_loss += loss.item()
#
# avg_loss = running_loss / len(loader)
# print(f'{model_name} Training Loss: {avg_loss:.4f}')
# return avg_loss
def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.squeeze(), labels.float())
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(loader)
print(f'{model_name} Training Loss: {avg_loss:.4f}')
return avg_loss
def validate_model(device, model, loader, criterion, epoch, model_name):
model.eval()
running_loss = 0.0
correct, total = 0, 0
all_labels, all_preds = [], []
with torch.no_grad():
for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
outputs = model(inputs)
# 将 logits 转换为预测
predicted = torch.sigmoid(outputs).data
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# loss = criterion(outputs.squeeze(), labels.float())
loss = criterion(outputs.squeeze(), labels.float())
running_loss += loss.item()
auc = roc_auc_score(all_labels, all_preds)
predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组
acc = accuracy_score(all_labels, predicted_labels)
avg_loss = running_loss / len(loader)
print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}')
return avg_loss, acc, auc
# 权重聚合函数
def aggregate_weights(weights_list, alpha=1 / 3, beta=1 / 3, gamma=1 / 3):
new_state_dict = copy.deepcopy(weights_list[0]) # 从模型a复制权重结构
for key in new_state_dict.keys():
new_state_dict[key] = (alpha * weights_list[0][key] +
beta * weights_list[1][key] +
gamma * weights_list[2][key])
return new_state_dict
def v3_update_model_weights(
epoch,
model_to_update,
other_models,
global_model,
losses,
val_loader,
device,
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
validate_model,
criterion,
update_frequency
):
"""
根据给定的条件更新模型的权重
参数:
epoch (int): 当前训练轮次
model_to_update: 需要更新的模型
other_models (list): 其他模型列表用于计算全局模型权重
global_model: 全局模型
losses (list): 各模型的损失值列表
val_loader: 验证数据的 DataLoader
device: 设备 ('cuda' 'cpu')
val_auc_threshold (float): 当前需要更新模型的验证 AUC
aggregate_weights (function): 权重聚合函数
validate_model (function): 验证模型的函数
update_frequency (int): 权重更新的频率
返回:
val_acc (float): 全局模型的验证精度
val_auc (float): 全局模型的验证 AUC
updated_val_auc_threshold (float): 更新后的验证 AUC
"""
if (epoch + 1) % update_frequency == 0:
# 获取所有模型的权重
all_weights = [model.state_dict() for model in other_models]
avg_weights = aggregate_weights(all_weights) # 聚合权重
# 更新全局模型权重
global_model.load_state_dict(avg_weights)
# 计算加权平均损失
weighted_loss = sum(loss * 0.33 for loss in losses)
print(f"Weighted Average Loss: {weighted_loss:.4f}")
# 验证全局模型
val_loss, val_acc, val_auc = validate_model(device, global_model, val_loader, criterion, epoch, 'global_model')
print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}')
# 如果全局模型的 AUC 更高,则更新目标模型
if val_auc > val_auc_threshold:
print(f'Updating model at epoch {epoch + 1}')
model_to_update.load_state_dict(global_model.state_dict())
val_auc_threshold = val_auc # 更新 AUC 阈值
return val_acc, val_auc, val_auc_threshold
return None, None, val_auc_threshold
def update_model_weights(
epoch,
model_to_update,
other_models,
global_model,
losses,
val_loader,
device,
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
validate_model,
criterion,
update_frequency
):
"""
根据给定的条件更新模型的权重
参数:
epoch (int): 当前训练轮次
model_to_update: 需要更新的模型
other_models (list): 其他模型列表用于计算全局模型权重
global_model: 全局模型
losses (list): 各模型的损失值列表
val_loader: 验证数据的 DataLoader
device: 设备 ('cuda' 'cpu')
val_auc_threshold (float): 当前需要更新模型的验证 AUC
aggregate_weights (function): 权重聚合函数
validate_model (function): 验证模型的函数
update_frequency (int): 权重更新的频率
返回:
val_acc (float): 全局模型的验证精度
val_auc (float): 全局模型的验证 AUC
updated_val_auc_threshold (float): 更新后的验证 AUC
"""
if (epoch + 1) % update_frequency == 0:
# 获取所有模型的权重
all_weights = [model.state_dict() for model in other_models]
avg_weights = aggregate_weights(all_weights) # 聚合权重
# 更新全局模型权重
global_model.load_state_dict(avg_weights)
# 计算加权平均损失
weighted_loss = sum(loss * 0.33 for loss in losses)
print(f"Weighted Average Loss: {weighted_loss:.4f}")
# 验证全局模型
val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch,
'global_model')
print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}')
# 如果全局模型的 AUC 更高,则更新目标模型
if val_auc > val_auc_threshold:
print(f'Updating model at epoch {epoch + 1}')
model_to_update.load_state_dict(global_model.state_dict())
val_auc_threshold = val_auc # 更新 AUC 阈值
return val_acc, val_auc, val_auc_threshold
return None, None, val_auc_threshold
def f_update_model_weights(
epoch,
model_to_update,
other_models,
global_model,
losses,
val_loader,
device,
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
aggregate_weights, # 权重聚合函数
validate_model,
criterion,
update_frequency
):
"""
根据给定的条件更新模型的权重
参数:
epoch (int): 当前训练轮次
model_to_update: 需要更新的模型
other_models (list): 其他模型列表用于计算全局模型权重
global_model: 全局模型
losses (list): 各模型的损失值列表
val_loader: 验证数据的 DataLoader
device: 设备 ('cuda' 'cpu')
val_auc_threshold (float): 当前需要更新模型的验证 AUC 阈值
aggregate_weights (function): 权重聚合函数
validate_model (function): 验证模型的函数
criterion: 损失函数
update_frequency (int): 权重更新的频率
返回:
val_acc (float): 全局模型的验证精度
val_auc (float): 全局模型的验证 AUC
updated_val_auc_threshold (float): 更新后的验证 AUC 阈值
"""
# 每隔指定的 epoch 更新一次模型权重
if (epoch + 1) % update_frequency == 0:
print(f"\n[Epoch {epoch + 1}] Updating global model weights...")
# 获取其他模型的权重
all_weights = [model.state_dict() for model in other_models]
# 使用聚合函数计算全局权重
avg_weights = aggregate_weights(all_weights)
print("Global model weights aggregated.")
# 更新全局模型权重
global_model.load_state_dict(avg_weights)
# 计算加权平均损失
weighted_loss = sum(loss * (1 / len(losses)) for loss in losses) # 平均加权
print(f"Weighted Average Loss: {weighted_loss:.4f}")
# 验证全局模型性能
val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch,
'global_model')
print(f"[Global Model] Validation Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}, AUC: {val_auc:.4f}")
# 如果全局模型 AUC 高于阈值,则更新目标模型权重
if val_auc > val_auc_threshold:
print(f"Global model AUC improved ({val_auc:.4f} > {val_auc_threshold:.4f}). Updating target model.")
model_to_update.load_state_dict(global_model.state_dict())
val_auc_threshold = val_auc # 更新 AUC 阈值
else:
print(
f"Global model AUC did not improve ({val_auc:.4f} <= {val_auc_threshold:.4f}). No update to target model.")
return val_acc, val_auc, val_auc_threshold
# 如果未到达更新频率,返回当前的 AUC 阈值
return None, None, val_auc_threshold