评价指标优化
This commit is contained in:
		@@ -11,7 +11,7 @@ from ultralytics import YOLO
 | 
			
		||||
from skimage.metrics import structural_similarity as ssim
 | 
			
		||||
 | 
			
		||||
# 添加YOLOv8模型初始化
 | 
			
		||||
yolo_model = YOLO("yolov8n.pt")  # 可替换为yolov8s/m/l等
 | 
			
		||||
yolo_model = YOLO("best.pt")  # 可替换为yolov8s/m/l等
 | 
			
		||||
yolo_model.to('cuda')  # 启用GPU加速
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -177,21 +177,21 @@ def main(matchimg_vi, matchimg_in):
 | 
			
		||||
        # (3, 3)//获取对应的配准坐标点
 | 
			
		||||
        flag, H, dot = Images_matching(matchimg_vi, matchimg_in)
 | 
			
		||||
        if flag == 0:
 | 
			
		||||
            return 0, None, 0
 | 
			
		||||
            return 0, None, 0, 0.0, 0.0, 0.0, 0.0
 | 
			
		||||
        else:
 | 
			
		||||
            # 配准处理
 | 
			
		||||
            matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
 | 
			
		||||
            matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
 | 
			
		||||
            
 | 
			
		||||
            # 裁剪可见光图像
 | 
			
		||||
            cropped_vi = orimg_vi[left:right, top:bottom]
 | 
			
		||||
            
 | 
			
		||||
            # fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
 | 
			
		||||
            fusion = fusions(cropped_vi, matched_ni)
 | 
			
		||||
            
 | 
			
		||||
            # 不裁剪可见光图像
 | 
			
		||||
            fusion = fusions(orimg_vi, matched_ni)
 | 
			
		||||
            
 | 
			
		||||
            # 转换为灰度计算指标
 | 
			
		||||
            fusion_gray = cv2.cvtColor(fusion, cv2.COLOR_RGB2GRAY)
 | 
			
		||||
            cropped_vi_gray = cv2.cvtColor(cropped_vi, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
            cropped_vi_gray = cv2.cvtColor(orimg_vi, cv2.COLOR_BGR2GRAY)
 | 
			
		||||
            matched_ni_gray = matched_ni  # 红外图已经是灰度
 | 
			
		||||
            
 | 
			
		||||
            # 计算指标
 | 
			
		||||
@@ -200,9 +200,15 @@ def main(matchimg_vi, matchimg_in):
 | 
			
		||||
            mi_visible = calculate_mi(fusion_gray, cropped_vi_gray)
 | 
			
		||||
            mi_infrared = calculate_mi(fusion_gray, matched_ni_gray)
 | 
			
		||||
            mi_total = mi_visible + mi_infrared
 | 
			
		||||
            ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
 | 
			
		||||
            ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
 | 
			
		||||
            ssim_avg = (ssim_visible + ssim_infrared) / 2
 | 
			
		||||
            
 | 
			
		||||
            # 添加SSIM容错处理
 | 
			
		||||
            try:
 | 
			
		||||
                ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
 | 
			
		||||
                ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
 | 
			
		||||
                ssim_avg = (ssim_visible + ssim_infrared) / 2
 | 
			
		||||
            except Exception as ssim_error:
 | 
			
		||||
                print(f"SSIM计算错误: {ssim_error}")
 | 
			
		||||
                ssim_avg = -1  # 用-1表示计算失败
 | 
			
		||||
            
 | 
			
		||||
            # YOLOv8目标检测
 | 
			
		||||
            results = yolo_model(fusion)  # 输入融合后的图像
 | 
			
		||||
@@ -212,16 +218,16 @@ def main(matchimg_vi, matchimg_in):
 | 
			
		||||
            return 1, annotated_image, dot, en, sf, mi_total, ssim_avg
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        print(f"Error in fusion/detection: {e}")
 | 
			
		||||
        return 0, None, 0
 | 
			
		||||
        return 0, None, 0, 0.0, 0.0, 0.0, 0.0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def parse_args():
 | 
			
		||||
    # 输入可见光和红外图像路径
 | 
			
		||||
    visible_image_path = "test/visible.jpg"  # 可见光图片路径
 | 
			
		||||
    infrared_image_path = "test/infrared.jpg"  # 红外图片路径
 | 
			
		||||
    visible_image_path = "./test/visible/visibleI0195.jpg"  # 可见光图片路径
 | 
			
		||||
    infrared_image_path = "./test/infrared/infraredI0195.jpg"  # 红外图片路径
 | 
			
		||||
    # 输入可见光和红外视频路径
 | 
			
		||||
    visible_video_path = "test/visible.mp4"  # 可见光视频路径
 | 
			
		||||
    infrared_video_path = "test/infrared.mp4"  # 红外视频路径
 | 
			
		||||
    visible_video_path = "./test/visible.mp4"  # 可见光视频路径
 | 
			
		||||
    infrared_video_path = "./test/infrared.mp4"  # 红外视频路径
 | 
			
		||||
    
 | 
			
		||||
    """解析命令行参数"""
 | 
			
		||||
    parser = argparse.ArgumentParser(description='图像融合与目标检测')
 | 
			
		||||
@@ -331,12 +337,18 @@ if __name__ == '__main__':
 | 
			
		||||
            print(f"信息熵(EN): {en:.2f}")
 | 
			
		||||
            print(f"空间频率(SF): {sf:.2f}")
 | 
			
		||||
            print(f"互信息(MI): {mi:.2f}")
 | 
			
		||||
            print(f"结构相似性(SSIM): {ssim_val:.4f}")
 | 
			
		||||
            
 | 
			
		||||
            # 条件显示SSIM
 | 
			
		||||
            if ssim_val >= 0:
 | 
			
		||||
                print(f"结构相似性(SSIM): {ssim_val:.4f}")
 | 
			
		||||
            else:
 | 
			
		||||
                print("结构相似性(SSIM): 计算失败(已跳过)")
 | 
			
		||||
            
 | 
			
		||||
            print(f"配准点数: {dot}")
 | 
			
		||||
            # 显示并保存结果
 | 
			
		||||
            cv2.imshow("Fusion with Detection", fusion_result)
 | 
			
		||||
            # cv2.imshow("Fusion with Detection", fusion_result)
 | 
			
		||||
            cv2.imwrite("output/fusion_result.jpg", fusion_result)
 | 
			
		||||
            cv2.waitKey(0)
 | 
			
		||||
            cv2.destroyAllWindows()
 | 
			
		||||
            # cv2.waitKey(0)
 | 
			
		||||
            # cv2.destroyAllWindows()
 | 
			
		||||
        else:
 | 
			
		||||
            print("融合失败!")
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user