Compare commits
13 Commits
69482e6a3f
...
main
Author | SHA1 | Date | |
---|---|---|---|
2e7cf69512 | |||
76240a12e6 | |||
98321aa7d5 | |||
d39aa31651 | |||
f127ae2852 | |||
3a65d89315 | |||
2a3e5b17e7 | |||
c57c8f3552 | |||
310131d876 | |||
ba4508507b | |||
89d8f4c0df | |||
d1ed958db5 | |||
abd033b831 |
5
.gitignore
vendored
5
.gitignore
vendored
@@ -299,5 +299,8 @@ Temporary Items
|
|||||||
|
|
||||||
# project files
|
# project files
|
||||||
/whl_packages/
|
/whl_packages/
|
||||||
/federated_learning/runs/detect/*
|
runs/
|
||||||
|
*.pt
|
||||||
*.cache
|
*.cache
|
||||||
|
.vscode/
|
||||||
|
*.json
|
||||||
|
32
README.md
32
README.md
@@ -1,3 +1,35 @@
|
|||||||
# Graduation-Project
|
# Graduation-Project
|
||||||
|
|
||||||
毕业设计:基于YOLO和图像融合技术的无人机检测系统及安全性研究
|
毕业设计:基于YOLO和图像融合技术的无人机检测系统及安全性研究
|
||||||
|
|
||||||
|
Linux 运行联邦训练
|
||||||
|
```bash
|
||||||
|
cd federated_learning
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
nohup python -u yolov8_fed.py > runtime.log 2>&1 &
|
||||||
|
```
|
||||||
|
|
||||||
|
Linux 运行集中训练
|
||||||
|
```bash
|
||||||
|
cd yolov8
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
nohup python -u yolov8_train.py > runtime.log 2>&1 &
|
||||||
|
```
|
||||||
|
|
||||||
|
实时监控日志文件
|
||||||
|
```bash
|
||||||
|
tail -f runtime.log
|
||||||
|
```
|
||||||
|
|
||||||
|
运行图像融合配准代码
|
||||||
|
```bash
|
||||||
|
cd image_fusion
|
||||||
|
```
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python Image_Registration_test.py
|
||||||
|
```
|
49
federated_learning/yolov8.yaml
Normal file
49
federated_learning/yolov8.yaml
Normal file
@@ -0,0 +1,49 @@
|
|||||||
|
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||||
|
|
||||||
|
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
|
||||||
|
# Model docs: https://docs.ultralytics.com/models/yolov8
|
||||||
|
# Task docs: https://docs.ultralytics.com/tasks/detect
|
||||||
|
|
||||||
|
# Parameters
|
||||||
|
nc: 1 # number of classes
|
||||||
|
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||||
|
# [depth, width, max_channels]
|
||||||
|
n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS
|
||||||
|
s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS
|
||||||
|
m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS
|
||||||
|
l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS
|
||||||
|
x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS
|
||||||
|
|
||||||
|
# YOLOv8.0n backbone
|
||||||
|
backbone:
|
||||||
|
# [from, repeats, module, args]
|
||||||
|
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||||
|
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||||
|
- [-1, 3, C2f, [128, True]]
|
||||||
|
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||||
|
- [-1, 6, C2f, [256, True]]
|
||||||
|
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||||
|
- [-1, 6, C2f, [512, True]]
|
||||||
|
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||||
|
- [-1, 3, C2f, [1024, True]]
|
||||||
|
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||||
|
|
||||||
|
# YOLOv8.0n head
|
||||||
|
head:
|
||||||
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||||
|
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||||
|
- [-1, 3, C2f, [512]] # 12
|
||||||
|
|
||||||
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||||
|
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||||
|
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||||
|
|
||||||
|
- [-1, 1, Conv, [256, 3, 2]]
|
||||||
|
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||||
|
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||||
|
|
||||||
|
- [-1, 1, Conv, [512, 3, 2]]
|
||||||
|
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||||
|
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||||
|
|
||||||
|
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
@@ -1,6 +1,9 @@
|
|||||||
import glob
|
import glob
|
||||||
import os
|
import os
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
import json
|
||||||
|
from pydoc import cli
|
||||||
|
from threading import local
|
||||||
|
|
||||||
import yaml
|
import yaml
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
@@ -16,120 +19,234 @@ def federated_avg(global_model, client_weights):
|
|||||||
if total_samples == 0:
|
if total_samples == 0:
|
||||||
raise ValueError("Total number of samples must be positive.")
|
raise ValueError("Total number of samples must be positive.")
|
||||||
|
|
||||||
|
# DEBUG: global_dict
|
||||||
|
# print(global_model)
|
||||||
|
|
||||||
# 获取YOLO底层PyTorch模型参数
|
# 获取YOLO底层PyTorch模型参数
|
||||||
global_dict = global_model.model.state_dict()
|
global_dict = global_model.model.state_dict()
|
||||||
# 提取所有客户端的 state_dict 和对应样本数
|
# 提取所有客户端的 state_dict 和对应样本数
|
||||||
state_dicts, sample_counts = zip(*client_weights)
|
state_dicts, sample_counts = zip(*client_weights)
|
||||||
|
|
||||||
for key in global_dict:
|
# 克隆参数并脱离计算图
|
||||||
# 对每一层参数取平均
|
global_dict_copy = {
|
||||||
# if global_dict[key].data.dtype == torch.float32:
|
k: v.clone().detach().requires_grad_(False) for k, v in global_dict.items()
|
||||||
# global_dict[key].data = torch.stack(
|
}
|
||||||
# [w[key].float() for w in client_weights], 0
|
|
||||||
# ).mean(0)
|
|
||||||
|
|
||||||
# 加权平均
|
# 聚合可训练且存在的参数
|
||||||
if global_dict[key].dtype == torch.float32: # 只聚合浮点型参数
|
for key in global_dict_copy:
|
||||||
# 跳过 BatchNorm 层的统计量
|
# if global_dict_copy[key].dtype != torch.float32:
|
||||||
if any(x in key for x in ['running_mean', 'running_var', 'num_batches_tracked']):
|
# continue
|
||||||
continue
|
# if any(
|
||||||
# 按照样本数加权求和
|
# x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
|
||||||
weighted_tensors = [sd[key].float() * (n / total_samples)
|
# ):
|
||||||
for sd, n in zip(state_dicts, sample_counts)]
|
# continue
|
||||||
global_dict[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
|
# 检查所有客户端是否包含当前键
|
||||||
|
all_clients_have_key = all(key in sd for sd in state_dicts)
|
||||||
|
if all_clients_have_key:
|
||||||
|
# 计算每个客户端的加权张量
|
||||||
|
# weighted_tensors = [
|
||||||
|
# client_state[key].float() * (sample_count / total_samples)
|
||||||
|
# for client_state, sample_count in zip(state_dicts, sample_counts)
|
||||||
|
# ]
|
||||||
|
weighted_tensors = []
|
||||||
|
for client_state, sample_count in zip(state_dicts, sample_counts):
|
||||||
|
weight = sample_count / total_samples # 计算权重
|
||||||
|
weighted_tensor = client_state[key].float() * weight # 加权张量
|
||||||
|
weighted_tensors.append(weighted_tensor)
|
||||||
|
# 聚合加权张量并更新全局参数
|
||||||
|
global_dict_copy[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
|
||||||
|
|
||||||
# 解决模型参数不匹配问题
|
# else:
|
||||||
try:
|
# print(f"错误: 键 {key} 在部分客户端缺失,已保留全局参数")
|
||||||
# 加载回YOLO模型
|
# 终止训练或记录日志
|
||||||
global_model.model.load_state_dict(global_dict)
|
# raise KeyError(f"键 {key} 缺失")
|
||||||
except RuntimeError as e:
|
|
||||||
print('Ignoring "' + str(e) + '"')
|
|
||||||
|
|
||||||
# 添加调试输出
|
# 加载回YOLO模型
|
||||||
print("\n=== 参数聚合检查 ===")
|
global_model.model.load_state_dict(global_dict_copy, strict=True)
|
||||||
|
|
||||||
# 选取一个典型参数层
|
# global_model.model.train()
|
||||||
# sample_key = list(global_dict.keys())[10]
|
# with torch.no_grad():
|
||||||
# original = global_dict[sample_key].data.mean().item()
|
# global_model.model.load_state_dict(global_dict_copy, strict=True)
|
||||||
# aggregated = torch.stack([w[sample_key] for w in client_weights]).mean().item()
|
|
||||||
# print(f"参数层 '{sample_key}' 变化: {original:.4f} → {aggregated:.4f}")
|
|
||||||
# print(f"客户端参数差异: {[w[sample_key].mean().item() for w in client_weights]}")
|
|
||||||
|
|
||||||
# 随机选取一个非统计量层进行对比
|
# 定义多个关键层
|
||||||
sample_key = next(k for k in global_dict if 'running_' not in k)
|
MONITOR_KEYS = [
|
||||||
aggregated_mean = global_dict[sample_key].mean().item()
|
"model.0.conv.weight",
|
||||||
client_means = [sd[sample_key].float().mean().item() for sd in state_dicts]
|
"model.1.conv.weight",
|
||||||
print(f"layer: '{sample_key}' Mean after aggregation: {aggregated_mean:.6f}")
|
"model.3.conv.weight",
|
||||||
print(f"The average value of the layer for each client: {client_means}")
|
"model.5.conv.weight",
|
||||||
|
"model.7.conv.weight",
|
||||||
|
"model.9.cv1.conv.weight",
|
||||||
|
"model.12.cv1.conv.weight",
|
||||||
|
"model.15.cv1.conv.weight",
|
||||||
|
"model.18.cv1.conv.weight",
|
||||||
|
"model.21.cv1.conv.weight",
|
||||||
|
"model.22.dfl.conv.weight",
|
||||||
|
]
|
||||||
|
|
||||||
|
with open("aggregation_check.txt", "a") as f:
|
||||||
|
f.write("\n=== 参数聚合检查 ===\n")
|
||||||
|
for key in MONITOR_KEYS:
|
||||||
|
# if key not in global_dict:
|
||||||
|
# continue
|
||||||
|
# if not all(key in sd for sd in state_dicts):
|
||||||
|
# continue
|
||||||
|
|
||||||
|
# 计算聚合后均值
|
||||||
|
aggregated_mean = global_dict[key].mean().item()
|
||||||
|
|
||||||
|
# 计算各客户端均值
|
||||||
|
client_means = [sd[key].float().mean().item() for sd in state_dicts]
|
||||||
|
with open("aggregation_check.txt", "a") as f:
|
||||||
|
f.write(f"层 '{key}' 聚合后均值: {aggregated_mean:.6f}\n")
|
||||||
|
f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n")
|
||||||
|
f.write(f"客户端最大差异: {max(client_means) - min(client_means):.6f}\n\n")
|
||||||
|
|
||||||
return global_model
|
return global_model
|
||||||
|
|
||||||
|
|
||||||
# ------------ 修改训练流程 ------------
|
# ------------ 修改训练流程 ------------
|
||||||
def federated_train(num_rounds, clients_data):
|
def federated_train(num_rounds, clients_data):
|
||||||
|
# ========== 初始化指标记录 ==========
|
||||||
|
metrics = {
|
||||||
|
"round": [],
|
||||||
|
"val_mAP": [], # 每轮验证集mAP
|
||||||
|
# "train_loss": [], # 每轮平均训练损失
|
||||||
|
"client_mAPs": [], # 各客户端本地模型在验证集上的mAP
|
||||||
|
"communication_cost": [], # 每轮通信开销(MB)
|
||||||
|
}
|
||||||
# 初始化全局模型
|
# 初始化全局模型
|
||||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
global_model = YOLO("yolov8n.pt").to(device)
|
global_model = (
|
||||||
# 设置类别数
|
YOLO("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.yaml")
|
||||||
global_model.model.nc = 1
|
.load("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.pt")
|
||||||
|
.to(device)
|
||||||
|
)
|
||||||
|
global_model.model.model[-1].nc = 1 # 设置检测类别数为1
|
||||||
|
# global_model.model.train.ema.enabled = False
|
||||||
|
|
||||||
|
# 克隆全局模型
|
||||||
|
local_model = copy.deepcopy(global_model)
|
||||||
|
|
||||||
for _ in range(num_rounds):
|
for _ in range(num_rounds):
|
||||||
client_weights = []
|
client_weights = []
|
||||||
|
# 各客户端的训练损失
|
||||||
|
# client_losses = []
|
||||||
|
|
||||||
|
# DEBUG: 检查全局模型参数
|
||||||
|
# global_dict = global_model.model.state_dict()
|
||||||
|
# print(global_dict.keys())
|
||||||
|
|
||||||
# 每个客户端本地训练
|
# 每个客户端本地训练
|
||||||
for data_path in clients_data:
|
for data_path in clients_data:
|
||||||
# 统计本地训练样本数
|
# 统计本地训练样本数
|
||||||
with open(data_path, 'r') as f:
|
with open(data_path, "r") as f:
|
||||||
config = yaml.safe_load(f)
|
config = yaml.safe_load(f)
|
||||||
# Resolve img_dir relative to the YAML file's location
|
# Resolve img_dir relative to the YAML file's location
|
||||||
yaml_dir = os.path.dirname(data_path)
|
yaml_dir = os.path.dirname(data_path)
|
||||||
img_dir = os.path.join(yaml_dir, config.get('train', data_path)) # 从配置文件中获取图像目录
|
img_dir = os.path.join(
|
||||||
|
yaml_dir, config.get("train", data_path)
|
||||||
|
) # 从配置文件中获取图像目录
|
||||||
|
|
||||||
# print(f"Image directory: {img_dir}")
|
# print(f"Image directory: {img_dir}")
|
||||||
num_samples = (len(glob.glob(os.path.join(img_dir, '*.jpg'))) +
|
num_samples = (
|
||||||
len(glob.glob(os.path.join(img_dir, '*.png'))))
|
len(glob.glob(os.path.join(img_dir, "*.jpg")))
|
||||||
|
+ len(glob.glob(os.path.join(img_dir, "*.png")))
|
||||||
|
+ len(glob.glob(os.path.join(img_dir, "*.jpeg")))
|
||||||
|
)
|
||||||
# print(f"Number of images: {num_samples}")
|
# print(f"Number of images: {num_samples}")
|
||||||
|
|
||||||
# 克隆全局模型
|
local_model.model.load_state_dict(
|
||||||
local_model = copy.deepcopy(global_model)
|
global_model.model.state_dict(), strict=True
|
||||||
|
)
|
||||||
|
|
||||||
# 本地训练(保持你的原有参数设置)
|
# 本地训练(保持你的原有参数设置)
|
||||||
local_model.train(
|
local_model.train(
|
||||||
|
name=f"train{_ + 1}", # 当前轮次
|
||||||
data=data_path,
|
data=data_path,
|
||||||
epochs=16, # 每轮本地训练1个epoch
|
# model=local_model,
|
||||||
save_period=16,
|
epochs=16, # 每轮本地训练多少个epoch
|
||||||
imgsz=640, # 图像大小
|
# save_period=16,
|
||||||
|
imgsz=768, # 图像大小
|
||||||
verbose=False, # 关闭冗余输出
|
verbose=False, # 关闭冗余输出
|
||||||
batch=-1
|
batch=-1, # 批大小
|
||||||
|
workers=6, # 工作线程数
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# 记录客户端训练损失
|
||||||
|
# client_loss = results.results_dict['train_loss']
|
||||||
|
# client_losses.append(client_loss)
|
||||||
|
|
||||||
# 收集模型参数及样本数
|
# 收集模型参数及样本数
|
||||||
client_weights.append((copy.deepcopy(local_model.model.state_dict()), num_samples))
|
client_weights.append((local_model.model.state_dict(), num_samples))
|
||||||
|
|
||||||
# 聚合参数更新全局模型
|
# 聚合参数更新全局模型
|
||||||
global_model = federated_avg(global_model, client_weights)
|
global_model = federated_avg(global_model, client_weights)
|
||||||
print(f"Round {_ + 1}/{num_rounds} completed.")
|
|
||||||
return global_model
|
# DEBUG: 检查全局模型参数
|
||||||
|
# keys = global_model.model.state_dict().keys()
|
||||||
|
|
||||||
|
# ========== 评估全局模型 ==========
|
||||||
|
# 复制全局模型以避免在评估时修改参数
|
||||||
|
val_model = copy.deepcopy(global_model)
|
||||||
|
# 评估全局模型在验证集上的性能
|
||||||
|
with torch.no_grad():
|
||||||
|
val_results = val_model.val(
|
||||||
|
data="/mnt/DATA/uav_dataset_old/UAVdataset/fed_data.yaml", # 指定验证集配置文件
|
||||||
|
imgsz=768, # 图像大小
|
||||||
|
batch=16, # 批大小
|
||||||
|
verbose=False, # 关闭冗余输出
|
||||||
|
)
|
||||||
|
# 丢弃评估模型
|
||||||
|
del val_model
|
||||||
|
|
||||||
|
# DEBUG: 检查全局模型参数
|
||||||
|
# if keys != global_model.model.state_dict().keys():
|
||||||
|
# print("模型参数不一致!")
|
||||||
|
|
||||||
|
val_mAP = val_results.box.map # 获取mAP@0.5
|
||||||
|
|
||||||
|
# 计算平均训练损失
|
||||||
|
# avg_train_loss = sum(client_losses) / len(client_losses)
|
||||||
|
|
||||||
|
# 计算通信开销(假设传输全部模型参数)
|
||||||
|
model_size = sum(p.numel() * 4 for p in global_model.model.parameters()) / (
|
||||||
|
1024**2
|
||||||
|
) # MB
|
||||||
|
|
||||||
|
# 记录到指标容器
|
||||||
|
metrics["round"].append(_ + 1)
|
||||||
|
metrics["val_mAP"].append(val_mAP)
|
||||||
|
# metrics['train_loss'].append(avg_train_loss)
|
||||||
|
metrics["communication_cost"].append(model_size)
|
||||||
|
# 打印当前轮次结果
|
||||||
|
with open("aggregation_check.txt", "a") as f:
|
||||||
|
f.write(f"\n[Round {_ + 1}/{num_rounds}]\n")
|
||||||
|
f.write(f"Validation mAP@0.5: {val_mAP:.4f}\n")
|
||||||
|
# f.write(f"Average Train Loss: {avg_train_loss:.4f}")
|
||||||
|
f.write(f"Communication Cost: {model_size:.2f} MB\n\n")
|
||||||
|
|
||||||
|
return global_model, metrics
|
||||||
|
|
||||||
|
|
||||||
# ------------ 使用示例 ------------
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# 联邦训练配置
|
# 联邦训练配置
|
||||||
clients_config = [
|
clients_config = [
|
||||||
"/root/autodl-tmp/dataset/train1/train1.yaml", # 客户端1数据路径
|
"/mnt/DATA/uav_fed/train1/train1.yaml", # 客户端1数据路径
|
||||||
"/root/autodl-tmp/dataset/train2/train2.yaml" # 客户端2数据路径
|
"/mnt/DATA/uav_fed/train2/train2.yaml", # 客户端2数据路径
|
||||||
]
|
]
|
||||||
|
|
||||||
|
# 使用本地数据集进行测试
|
||||||
|
# clients_config = [
|
||||||
|
# "/home/image1325/DATA/Graduation-Project/dataset/train1/train1.yaml",
|
||||||
|
# "/home/image1325/DATA/Graduation-Project/dataset/train2/train2.yaml",
|
||||||
|
# ]
|
||||||
|
|
||||||
# 运行联邦训练
|
# 运行联邦训练
|
||||||
final_model = federated_train(num_rounds=10, clients_data=clients_config)
|
final_model, metrics = federated_train(num_rounds=10, clients_data=clients_config)
|
||||||
|
|
||||||
# 保存最终模型
|
# 保存最终模型
|
||||||
final_model.save("yolov8n_federated.pt")
|
final_model.save("yolov8n_federated.pt")
|
||||||
# final_model.export(format="onnx") # 导出为ONNX格式
|
# final_model.export(format="onnx") # 导出为ONNX格式
|
||||||
|
|
||||||
# 检查1:确认模型保存
|
with open("metrics.json", "w") as f:
|
||||||
# assert Path("yolov8n_federated.onnx").exists(), "模型导出失败"
|
json.dump(metrics, f, indent=4)
|
||||||
|
|
||||||
# 检查2:验证预测功能
|
|
||||||
# results = final_model.predict("../dataset/val/images/VS_P65.jpg", save=True)
|
|
||||||
# assert len(results[0].boxes) > 0, "预测结果异常"
|
|
||||||
|
Binary file not shown.
@@ -8,12 +8,41 @@ import cv2
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from ultralytics import YOLO
|
from ultralytics import YOLO
|
||||||
|
from skimage.metrics import structural_similarity as ssim
|
||||||
|
|
||||||
# 添加YOLOv8模型初始化
|
# 添加YOLOv8模型初始化
|
||||||
yolo_model = YOLO("yolov8n.pt") # 可替换为yolov8s/m/l等
|
yolo_model = YOLO("best.pt") # 可替换为yolov8s/m/l等
|
||||||
yolo_model.to('cuda') # 启用GPU加速
|
yolo_model.to('cuda') # 启用GPU加速
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_en(img):
|
||||||
|
"""计算信息熵(处理灰度图)"""
|
||||||
|
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
|
||||||
|
hist = hist / hist.sum()
|
||||||
|
return -np.sum(hist * np.log2(hist + 1e-10))
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_sf(img):
|
||||||
|
"""计算空间频率(处理灰度图)"""
|
||||||
|
rf = np.sqrt(np.mean(np.square(np.diff(img, axis=0))))
|
||||||
|
cf = np.sqrt(np.mean(np.square(np.diff(img, axis=1))))
|
||||||
|
return np.sqrt(rf ** 2 + cf ** 2)
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_mi(img1, img2):
|
||||||
|
"""计算互信息(处理灰度图)"""
|
||||||
|
hist_2d = np.histogram2d(img1.ravel(), img2.ravel(), 256)[0]
|
||||||
|
pxy = hist_2d / hist_2d.sum()
|
||||||
|
px = np.sum(pxy, axis=1)
|
||||||
|
py = np.sum(pxy, axis=0)
|
||||||
|
return np.sum(pxy * np.log2(pxy / (px[:, None] * py[None, :] + 1e-10) + 1e-10))
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_ssim(img1, img2):
|
||||||
|
"""计算SSIM(处理灰度图)"""
|
||||||
|
return ssim(img1, img2, data_range=255)
|
||||||
|
|
||||||
|
|
||||||
# 裁剪线性RGB对比度拉伸:(去掉2%百分位以下的数,去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
|
# 裁剪线性RGB对比度拉伸:(去掉2%百分位以下的数,去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
|
||||||
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
|
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
|
||||||
"""
|
"""
|
||||||
@@ -145,32 +174,60 @@ def main(matchimg_vi, matchimg_in):
|
|||||||
orimg_vi = matchimg_vi
|
orimg_vi = matchimg_vi
|
||||||
orimg_in = matchimg_in
|
orimg_in = matchimg_in
|
||||||
h, w = orimg_vi.shape[:2] # 480 640
|
h, w = orimg_vi.shape[:2] # 480 640
|
||||||
flag, H, dot = Images_matching(matchimg_vi, matchimg_in) # (3, 3)//获取对应的配准坐标点
|
# (3, 3)//获取对应的配准坐标点
|
||||||
|
flag, H, dot = Images_matching(matchimg_vi, matchimg_in)
|
||||||
if flag == 0:
|
if flag == 0:
|
||||||
return 0, None, 0
|
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
|
||||||
else:
|
else:
|
||||||
|
# 配准处理
|
||||||
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
|
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
|
||||||
matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
|
matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
|
||||||
|
|
||||||
|
# 裁剪可见光图像
|
||||||
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
|
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
|
||||||
|
|
||||||
|
# 不裁剪可见光图像
|
||||||
fusion = fusions(orimg_vi, matched_ni)
|
fusion = fusions(orimg_vi, matched_ni)
|
||||||
|
|
||||||
|
# 转换为灰度计算指标
|
||||||
|
fusion_gray = cv2.cvtColor(fusion, cv2.COLOR_RGB2GRAY)
|
||||||
|
cropped_vi_gray = cv2.cvtColor(orimg_vi, cv2.COLOR_BGR2GRAY)
|
||||||
|
matched_ni_gray = matched_ni # 红外图已经是灰度
|
||||||
|
|
||||||
|
# 计算指标
|
||||||
|
en = calculate_en(fusion_gray)
|
||||||
|
sf = calculate_sf(fusion_gray)
|
||||||
|
mi_visible = calculate_mi(fusion_gray, cropped_vi_gray)
|
||||||
|
mi_infrared = calculate_mi(fusion_gray, matched_ni_gray)
|
||||||
|
mi_total = mi_visible + mi_infrared
|
||||||
|
|
||||||
|
# 添加SSIM容错处理
|
||||||
|
try:
|
||||||
|
ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
|
||||||
|
ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
|
||||||
|
ssim_avg = (ssim_visible + ssim_infrared) / 2
|
||||||
|
except Exception as ssim_error:
|
||||||
|
print(f"SSIM计算错误: {ssim_error}")
|
||||||
|
ssim_avg = -1 # 用-1表示计算失败
|
||||||
|
|
||||||
# YOLOv8目标检测
|
# YOLOv8目标检测
|
||||||
results = yolo_model(fusion) # 输入融合后的图像
|
results = yolo_model(fusion) # 输入融合后的图像
|
||||||
annotated_image = results[0].plot() # 绘制检测框
|
annotated_image = results[0].plot() # 绘制检测框
|
||||||
|
|
||||||
return 1, annotated_image, dot # 返回带检测结果的图像
|
# 返回带检测结果的图像
|
||||||
|
return 1, annotated_image, dot, en, sf, mi_total, ssim_avg
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error in fusion/detection: {e}")
|
print(f"Error in fusion/detection: {e}")
|
||||||
return 0, None, 0
|
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
|
||||||
|
|
||||||
|
|
||||||
def parse_args():
|
def parse_args():
|
||||||
# 输入可见光和红外图像路径
|
# 输入可见光和红外图像路径
|
||||||
visible_image_path = "test/visible.jpg" # 可见光图片路径
|
visible_image_path = "./test/visible/visibleI0195.jpg" # 可见光图片路径
|
||||||
infrared_image_path = "test/infrared.jpg" # 红外图片路径
|
infrared_image_path = "./test/infrared/infraredI0195.jpg" # 红外图片路径
|
||||||
# 输入可见光和红外视频路径
|
# 输入可见光和红外视频路径
|
||||||
visible_video_path = "test/visible.mp4" # 可见光视频路径
|
visible_video_path = "./test/visible.mp4" # 可见光视频路径
|
||||||
infrared_video_path = "test/infrared.mp4" # 红外视频路径
|
infrared_video_path = "./test/infrared.mp4" # 红外视频路径
|
||||||
|
|
||||||
"""解析命令行参数"""
|
"""解析命令行参数"""
|
||||||
parser = argparse.ArgumentParser(description='图像融合与目标检测')
|
parser = argparse.ArgumentParser(description='图像融合与目标检测')
|
||||||
@@ -272,13 +329,26 @@ if __name__ == '__main__':
|
|||||||
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
|
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
# 执行融合与检测
|
# 执行融合与检测
|
||||||
flag, fusion_result, _ = main(img_visible, img_inf_gray)
|
flag, fusion_result, dot, en, sf, mi, ssim_val = main(img_visible, img_inf_gray)
|
||||||
|
|
||||||
if flag == 1:
|
if flag == 1:
|
||||||
|
# 展示评价指标
|
||||||
|
print("\n======== 融合质量评价 ========")
|
||||||
|
print(f"信息熵(EN): {en:.2f}")
|
||||||
|
print(f"空间频率(SF): {sf:.2f}")
|
||||||
|
print(f"互信息(MI): {mi:.2f}")
|
||||||
|
|
||||||
|
# 条件显示SSIM
|
||||||
|
if ssim_val >= 0:
|
||||||
|
print(f"结构相似性(SSIM): {ssim_val:.4f}")
|
||||||
|
else:
|
||||||
|
print("结构相似性(SSIM): 计算失败(已跳过)")
|
||||||
|
|
||||||
|
print(f"配准点数: {dot}")
|
||||||
# 显示并保存结果
|
# 显示并保存结果
|
||||||
cv2.imshow("Fusion with Detection", fusion_result)
|
# cv2.imshow("Fusion with Detection", fusion_result)
|
||||||
cv2.imwrite("output/fusion_result.jpg", fusion_result)
|
cv2.imwrite("output/fusion_result.jpg", fusion_result)
|
||||||
cv2.waitKey(0)
|
# cv2.waitKey(0)
|
||||||
cv2.destroyAllWindows()
|
# cv2.destroyAllWindows()
|
||||||
else:
|
else:
|
||||||
print("融合失败!")
|
print("融合失败!")
|
||||||
|
@@ -1,74 +0,0 @@
|
|||||||
import numpy as np
|
|
||||||
import cv2
|
|
||||||
from skimage.metrics import structural_similarity as ssim
|
|
||||||
from skimage.filters import sobel
|
|
||||||
from sklearn.metrics import mutual_info_score
|
|
||||||
|
|
||||||
|
|
||||||
# Helper to compute mutual information between two grayscale images
|
|
||||||
def evaluate_mutual_information(img1_gray, img2_gray):
|
|
||||||
hist_2d, _, _ = np.histogram2d(img1_gray.ravel(), img2_gray.ravel(), bins=256)
|
|
||||||
pxy = hist_2d / float(np.sum(hist_2d))
|
|
||||||
px = np.sum(pxy, axis=1)
|
|
||||||
py = np.sum(pxy, axis=0)
|
|
||||||
px_py = np.outer(px, py)
|
|
||||||
nzs = pxy > 0
|
|
||||||
mi = np.sum(pxy[nzs] * np.log(pxy[nzs] / px_py[nzs]))
|
|
||||||
return mi
|
|
||||||
|
|
||||||
|
|
||||||
# Compute SSIM between two grayscale images
|
|
||||||
def evaluate_registration_ssim(img1_gray, img2_gray):
|
|
||||||
return ssim(img1_gray, img2_gray)
|
|
||||||
|
|
||||||
|
|
||||||
# Entropy of grayscale image (fusion quality)
|
|
||||||
def evaluate_fusion_entropy(fusion_img):
|
|
||||||
gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
|
|
||||||
hist = hist.ravel() / hist.sum()
|
|
||||||
entropy = -np.sum(hist * np.log2(hist + 1e-9))
|
|
||||||
return entropy
|
|
||||||
|
|
||||||
|
|
||||||
# Edge strength using Sobel (fusion quality)
|
|
||||||
def evaluate_fusion_edges(fusion_img):
|
|
||||||
gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
edges = sobel(gray.astype(float) / 255.0)
|
|
||||||
return np.mean(edges)
|
|
||||||
|
|
||||||
|
|
||||||
# SSIM between fused image and one of the sources
|
|
||||||
def evaluate_fusion_ssim(fusion_img, reference_img):
|
|
||||||
fusion_gray = cv2.cvtColor(fusion_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
ref_gray = cv2.cvtColor(reference_img, cv2.COLOR_RGB2GRAY)
|
|
||||||
return ssim(fusion_gray, ref_gray)
|
|
||||||
|
|
||||||
|
|
||||||
# Return all in one place (stub images would be required to test)
|
|
||||||
def summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim):
|
|
||||||
return {
|
|
||||||
"Registration SSIM": evaluate_registration_ssim(img1_gray, img2_gray),
|
|
||||||
"Mutual Information": evaluate_mutual_information(img1_gray, img2_gray),
|
|
||||||
"Fusion Entropy": evaluate_fusion_entropy(fusion_img),
|
|
||||||
"Fusion Edge Strength": evaluate_fusion_edges(fusion_img),
|
|
||||||
"Fusion SSIM (vs Ref)": evaluate_fusion_ssim(fusion_img, ref_img_for_ssim),
|
|
||||||
}
|
|
||||||
|
|
||||||
# 将所有评价封装成一个高层函数 evaluate_all
|
|
||||||
def evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim, verbose=True):
|
|
||||||
"""
|
|
||||||
评估图像配准和融合质量的通用函数
|
|
||||||
:param img1_gray: 可见光灰度图像(原图)
|
|
||||||
:param img2_gray: 红外灰度图像(配准后)
|
|
||||||
:param fusion_img: 融合图像(RGB)
|
|
||||||
:param ref_img_for_ssim: 可见光RGB图,用于对比SSIM
|
|
||||||
:param verbose: 是否打印结果
|
|
||||||
:return: dict 评价指标结果
|
|
||||||
"""
|
|
||||||
results = summarize_evaluation(img1_gray, img2_gray, fusion_img, ref_img_for_ssim)
|
|
||||||
if verbose:
|
|
||||||
print("图像评价指标如下:")
|
|
||||||
for k, v in results.items():
|
|
||||||
print(f"{k}: {v:.4f}")
|
|
||||||
return results
|
|
@@ -1,26 +0,0 @@
|
|||||||
from evaluate import *
|
|
||||||
|
|
||||||
# 创建模拟图像数据用于测试
|
|
||||||
# img1_gray:原始灰度图像(可见光)
|
|
||||||
# img2_gray:变换后的灰度图像(红外模拟)
|
|
||||||
# fusion_img:融合图像(可见光 + 红外)
|
|
||||||
# ref_img_for_ssim:参考图像(可见光RGB)
|
|
||||||
|
|
||||||
# 创建基础灰度图像(梯度)
|
|
||||||
img1_gray = np.tile(np.linspace(50, 200, 256).astype(np.uint8), (256, 1))
|
|
||||||
|
|
||||||
# 模拟配准后的图像:加一点噪声和平移
|
|
||||||
img2_gray = np.roll(img1_gray, shift=5, axis=1) # 平移模拟配准偏差
|
|
||||||
noise = np.random.normal(0, 5, img2_gray.shape).astype(np.uint8)
|
|
||||||
img2_gray = cv2.add(img2_gray, noise)
|
|
||||||
|
|
||||||
# 创建 RGB 可见光图(重复三个通道)
|
|
||||||
ref_img_for_ssim = cv2.merge([img1_gray] * 3)
|
|
||||||
|
|
||||||
# 创建融合图像(取两个灰度图平均后合并入RGB)
|
|
||||||
fusion_Y = cv2.addWeighted(img1_gray, 0.5, img2_gray, 0.5, 0)
|
|
||||||
fusion_img = cv2.merge([fusion_Y, img1_gray, img2_gray])
|
|
||||||
|
|
||||||
# 运行评价函数
|
|
||||||
scores = evaluate_all(img1_gray, img2_gray, fusion_img, ref_img_for_ssim)
|
|
||||||
|
|
Binary file not shown.
6
yolov8/yolov8.yaml
Normal file
6
yolov8/yolov8.yaml
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
train: /mnt/DATA/dataset/uav_dataset/train/images/
|
||||||
|
val: /mnt/DATA/dataset/uav_dataset/val/images/
|
||||||
|
test: /mnt/DATA/dataset/test2/images/
|
||||||
|
# number of classes
|
||||||
|
nc: 1
|
||||||
|
names: ['uav']
|
13
yolov8/yolov8_train.py
Normal file
13
yolov8/yolov8_train.py
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
from ultralytics import YOLO
|
||||||
|
|
||||||
|
# 加载预训练模型
|
||||||
|
model = YOLO('../yolov8n.pt')
|
||||||
|
|
||||||
|
# 开始训练
|
||||||
|
model.train(
|
||||||
|
data='./yolov8.yaml', # 数据配置文件路径
|
||||||
|
epochs=320, # 训练轮数
|
||||||
|
batch=-1, # 批量大小
|
||||||
|
imgsz=640, # 输入图片大小
|
||||||
|
device=0 # 使用的设备(0 表示 GPU,'cpu' 表示 CPU)
|
||||||
|
)
|
Reference in New Issue
Block a user