Graduation-Project/image_fusion/Img_Registration.py
2025-04-18 22:15:37 +08:00

148 lines
5.1 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
# @Time :
# @Author :
import cv2
import numpy as np
sift = cv2.SIFT_create()
def compuerSift2GetPts(img1, img2):
# sift 查找关键点,关键点 And 描述
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
matcher = cv2.BFMatcher()
raw_matches = matcher.knnMatch(des1, des2, k=2)
good_matches = []
ratio = 0.75
for m1, m2 in raw_matches:
# 如果最接近和次接近的比值大于一个既定的值那么我们保留这个最接近的值认为它和其匹配的点为good_match
if m1.distance < ratio * m2.distance:
good_matches.append([m1])
matches = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good_matches, None, flags=2)
ptsA = np.float32([kp1[m[0].queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
ptsB = np.float32([kp2[m[0].trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
ransacReprojThreshold = 4
# 单应性矩阵可以将一张图通过旋转、变换等方式与另一张图对齐
# print(len(ptsA), len(ptsB))
if len(ptsA) == 0: return ptsA, ptsB, 0
H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
cv2.imshow("matcher", matches)
cv2.waitKey(100)
return ptsA, ptsB, 1
def findBestDistanceAndPts(ptsA, ptsB):
x_dct = {}
y_dct = {}
best_x, best_y = int(ptsA[0][0][0] - ptsB[0][0][0]), int(ptsA[0][0][1] - ptsB[0][0][1])
x_cnt, y_cnt = 0, 0
for i in range(len(ptsA)):
# print(ptsA[i], ' ', ptsB[i])
x_dis = int(ptsA[i][0][0] - ptsB[i][0][0])
y_dis = int(ptsA[i][0][1] - ptsB[i][0][1])
# print(x_dis)
if x_dis in x_dct:
x_dct.update({x_dis: int(x_dct.get(x_dis) + 1)})
if x_dct.get(x_dis) > x_cnt:
best_x = x_dis
x_cnt = x_dct.get(x_dis)
# print(x_dct.get(x_dis))
else:
x_dct.update({x_dis: 1})
# print(x_dct.get(x_dis))
# print(y_dis)
if y_dis in y_dct:
y_dct.update({y_dis: int(y_dct.get(y_dis) + 1)})
if y_dct.get(y_dis) > y_cnt:
best_y = y_dis
y_cnt = y_dct.get(y_dis)
# print(y_dct.get(y_dis))
else:
y_dct.update({y_dis: 1})
# print(y_dct.get(y_dis))
print(best_x, best_y)
pt = []
ptb = []
for i in range(len(ptsA)):
x_dis = int(ptsA[i][0][0] - ptsB[i][0][0])
y_dis = int(ptsA[i][0][1] - ptsB[i][0][1])
if abs(best_x - x_dis) <= 0:
pt.append([ptsA[i][0][0], ptsA[i][0][1]])
# print(pt)
return pt, best_x, best_y
def minDistanceHasXy(ptsA, ptsB):
dct = {}
cnt = 0
best = 's'
for i in range(len(ptsA)):
disx = int(ptsA[i][0][0] - ptsB[i][0][0] + 0.5)
disy = int(ptsA[i][0][1] - ptsB[i][0][1] + 0.5)
s = str(disx) + ',' + str(disy)
# print(s)
if s in dct:
dct.updata({s: int(dct.get(s) + 1)})
if dct.get(s) >= cnt:
cnt = dct.get(s)
best = s
print(s)
else:
dct.update({s: int(1)})
for i, j in dct.items():
print(i, j)
print(best)
def detectImg(img1, img2, pta, best_x, best_y):
# print(pta)
min_x = int(min(x[0] for x in pta))
max_x = int(max(x[0] for x in pta))
min_y = int(min(x[1] for x in pta))
max_y = int(max(x[1] for x in pta))
# print(min_x, max_x)
# print(min_x - best_x, max_x - best_x)
# print(min_y, max_y)
# print(min_y - best_y, max_y - best_y)
newimg1 = img1[min_y: max_y, min_x: max_x]
newimg2 = img2[min_y - best_y: max_y - best_y, min_x - best_x: max_x - best_x]
# cv2.imshow("newimg1", newimg1)
# cv2.imshow("newimg2", newimg2)
# cv2.waitKey(0)
return newimg1, newimg2
if __name__ == '__main__':
j = 0
for i in range(20, 4771, 1):
print(i)
path1 = './data/907dat/gray/camera1-' + str(i) + '.png'
path2 = './data/907dat/color/camera0-' + str(i) + '.png'
img1 = cv2.imread(path1)
img2 = cv2.imread(path2)
if (img1 is None or img2 is None): continue
PtsA, PtsB, f = compuerSift2GetPts(img1, img2)
if (f == 0): continue
pt, best_x, best_y = findBestDistanceAndPts(PtsA, PtsB)
newimg1, newimg2 = detectImg(img1, img2, pt, best_x, best_y)
if newimg1.shape[0] < 10 or newimg1.shape[1] < 10: continue
print(newimg1.shape, newimg2.shape)
# newimg1 = cv2.resize(newimg1, (320, 240))
# newimg2 = cv2.resize(newimg2, (320, 240))
wirtePath1 = './result/dat_result_2/gray/camera1-' + str(j) + '.png'
wirtePath2 = './result/dat_result_2/color/camera0-' + str(j) + '.png'
if newimg1.shape[0] > 255 and newimg1.shape[1] > 255 and newimg1.shape == newimg2.shape:
# cv2.imwrite(wirtePath1, newimg1)
# cv2.imwrite(wirtePath2, newimg2)
j += 1
cv2.imshow("newimg1", newimg1)
cv2.imshow("newimg2", newimg2)
cv2.waitKey()
print(j)
pass