Files
yolov11-pt/docker-compose.yml

60 lines
1.5 KiB
YAML
Raw Normal View History

2025-10-18 22:03:55 +08:00
# version: "3.9"
services:
dl:
build:
context: .
dockerfile: Dockerfile
args:
BASE_IMAGE: "pytorch/pytorch:2.9.0-cuda13.0-cudnn9-devel"
USER: "dev"
UID: "1000"
GID: "1000"
container_name: dl
# GPUs + large DataLoader shared memory
gpus: all
shm_size: "12g"
ipc: host
environment:
# Always use GPUs (you can limit to some: e.g., "0,1")
- NVIDIA_VISIBLE_DEVICES=0
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
# Prefer NCCL for multi-GPU
- TORCH_DISTRIBUTED_DEBUG=INFO
- NCCL_P2P_DISABLE=0
- NCCL_ASYNC_ERROR_HANDLING=1
# Persisted virtualenv on PATH (lives in a named volume)
- VIRTUAL_ENV=./venv
- PATH=./venv/bin:/usr/local/bin:/usr/bin:/bin
- PYTHONUNBUFFERED=1
- TZ=America/Los_Angeles
volumes:
# your code/data
- .:/workspace
- /home/image1325/ssd1/dataset/coco:/data
# persisted venv: your pip installs live here and survive image/container removal
- venv:./venv
# (optional) speed up installs
- pip-cache:/home/dev/.cache/pip
working_dir: /workspace
ulimits:
memlock: -1
stack: 67108864
# On first run, create the venv if it doesn't exist; then drop to a shell.
command: >
bash -lc "
if [ ! -d /opt/venv/bin ]; then
python -m venv /opt/venv;
/opt/venv/bin/python -m pip install --upgrade pip;
fi;
exec bash
"
volumes:
venv:
pip-cache: