Compare commits

...

41 Commits

Author SHA1 Message Date
2e7cf69512 增加说明 2025-05-10 17:23:06 +08:00
76240a12e6 增加联邦学习评价指标。bugfix: 修复训练模型参数聚合问题 2025-05-10 17:22:56 +08:00
98321aa7d5 训练模型配置 2025-05-10 16:19:00 +08:00
d39aa31651 删除无用文件 2025-05-10 16:18:37 +08:00
f127ae2852 增加联邦学习指标;fix:Pytorch 加载模型不匹配 2025-05-07 10:41:36 +08:00
3a65d89315 ignore .vscode 2025-05-07 10:41:06 +08:00
2a3e5b17e7 yolov8对比训练 2025-05-05 17:30:12 +08:00
c57c8f3552 忽略训练结果和pt文件 2025-05-05 17:29:58 +08:00
310131d876 文件结构调整 2025-05-05 17:03:41 +08:00
myh
ba4508507b 评价指标优化 2025-04-22 21:41:58 +08:00
myh
89d8f4c0df 添加评价指标 2025-04-22 16:35:29 +08:00
myh
d1ed958db5 删除实例模块 2025-04-22 16:35:19 +08:00
myh
abd033b831 训练命令 2025-04-22 16:35:10 +08:00
myh
69482e6a3f 修改参数,符合Linux路径要求 2025-04-22 14:56:45 +08:00
myh
9f827af58e 删除无用样例 2025-04-22 14:51:15 +08:00
myh
338a5e07e8 修改参数,使其符合训练数据集 2025-04-22 00:19:43 +08:00
myh
9d99b00e55 更改最小测试示例 2025-04-21 23:50:41 +08:00
myh
dd0e0d869c 忽略缓存文件 2025-04-21 23:50:12 +08:00
myh
8cd6df4527 数据集测试样例配置 2025-04-21 22:27:19 +08:00
myh
132ed64136 数据集测试样例 2025-04-21 22:26:52 +08:00
myh
be1e3627e7 评价指标测试 2025-04-21 17:51:38 +08:00
myh
d139f5afcf 评价指标 2025-04-21 17:51:32 +08:00
myh
428790ab91 项目重构 2025-04-20 16:36:41 +08:00
myh
65e10f3e7d 忽略模型文件 2025-04-20 15:25:05 +08:00
myh
960b66a692 python包新加__init__文件 2025-04-20 15:21:19 +08:00
myh
ef3d521e4a 测试数据集文件 2025-04-20 15:20:40 +08:00
myh
3b80f237fa 联邦平均算法:结合yolov8 2025-04-20 15:20:16 +08:00
myh
f320e79702 更改项目结构 2025-04-20 15:19:55 +08:00
myh
34a5247dd2 联邦学习示例项目:更改结构 2025-04-20 15:19:24 +08:00
myh
1930e1b96b 格式化 2025-04-19 20:31:12 +08:00
myh
5095dbe6c0 格式化代码 2025-04-19 20:09:42 +08:00
myh
554c7e6083 删除冗余算法 2025-04-19 20:09:17 +08:00
myh
0d84bba234 测试图片 2025-04-19 19:01:07 +08:00
myh
c81de41b3e 添加三种不同模式 2025-04-19 18:59:35 +08:00
myh
b8ffb902b3 忽略三方库文件夹 2025-04-19 18:59:14 +08:00
myh
da36a8fc09 添加参数控制列表 2025-04-19 18:58:44 +08:00
myh
45db741f35 删除无用文件 2025-04-19 13:08:24 +08:00
myh
5df0e15baf 静态图片测试 2025-04-19 13:08:15 +08:00
myh
5e72ac28cc yolo模型文件 2025-04-19 13:07:47 +08:00
myh
5b61b48d50 依赖包 2025-04-19 13:07:37 +08:00
myh
160bb2e365 测试图片 2025-04-19 13:07:28 +08:00
34 changed files with 634 additions and 879 deletions

7
.gitignore vendored
View File

@@ -297,3 +297,10 @@ Network Trash Folder
Temporary Items
.apdisk
# project files
/whl_packages/
runs/
*.pt
*.cache
.vscode/
*.json

View File

@@ -1,3 +1,35 @@
# Graduation-Project
毕业设计基于YOLO和图像融合技术的无人机检测系统及安全性研究
毕业设计基于YOLO和图像融合技术的无人机检测系统及安全性研究
Linux 运行联邦训练
```bash
cd federated_learning
```
```bash
nohup python -u yolov8_fed.py > runtime.log 2>&1 &
```
Linux 运行集中训练
```bash
cd yolov8
```
```bash
nohup python -u yolov8_train.py > runtime.log 2>&1 &
```
实时监控日志文件
```bash
tail -f runtime.log
```
运行图像融合配准代码
```bash
cd image_fusion
```
```bash
python Image_Registration_test.py
```

BIN
dataset/train1/images/6.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 145 KiB

BIN
dataset/train1/images/7.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 97 KiB

View File

@@ -0,0 +1,2 @@
0 0.5375 0.37395833333333334 0.253125 0.16458333333333333
0 0.2890625 0.5833333333333334 0.196875 0.1125

View File

@@ -0,0 +1 @@
0 0.36328125 0.525 0.7109375 0.8083333333333333

View File

@@ -0,0 +1,4 @@
train: ./images
val: ../val
nc: 1
names: ['uav']

Binary file not shown.

After

Width:  |  Height:  |  Size: 136 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

View File

@@ -0,0 +1 @@
0 0.6934895833333333 0.6527777777777778 0.008854166666666666 0.018518518518518517

View File

@@ -0,0 +1 @@
0 0.423698 0.593519 0.061979 0.029630

View File

@@ -0,0 +1,4 @@
train: ./images
val: ../val
nc: 1
names: ['uav']

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 74 KiB

View File

@@ -0,0 +1 @@
0 0.5109375 0.5322916666666667 0.125 0.13958333333333334

View File

@@ -0,0 +1 @@
0 0.55078125 0.296875 0.0890625 0.08958333333333333

View File

@@ -0,0 +1,16 @@
# 创建测试目录结构
mkdir -p ./test_data/{client1,client2}/{train,val}/images
mkdir -p ./test_data/{client1,client2}/{train,val}/labels
# 生成虚拟数据各客户端仅需2张图片
for client in client1 client2; do
for split in train val; do
# 创建空图片128x128 RGB
magick -size 128x128 xc:white test_data/${client}/${split}/images/img1.jpg
magick -size 128x128 xc:black test_data/${client}/${split}/images/img2.jpg
# 创建示例标签文件
echo "0 0.5 0.5 0.2 0.2" > test_data/${client}/${split}/labels/img1.txt
echo "1 0.3 0.3 0.4 0.4" > test_data/${client}/${split}/labels/img2.txt
done
done

View File

@@ -0,0 +1,4 @@
train: ../test_data/client1/train/images
val: ../test_data/client1/val/images
nc: 2
names: [ 'class0', 'class1' ]

View File

@@ -0,0 +1,4 @@
train: ../test_data/client2/train/images
val: ../test_data/client2/val/images
nc: 2
names: [ 'class0', 'class1' ]

View File

@@ -1,155 +0,0 @@
import argparse
import torch
import os
from torch import optim
from torch.optim import lr_scheduler
from util.data_utils import get_data
from util.model_utils import get_model
from util.train_utils import train_model, validate_model, update_model_weights, v3_update_model_weights
def main(args):
device = torch.device(args.device)
# 数据加载器
loader1, loader2, loader3, subset_len, val_loader = get_data(
args.train_path, args.val_path, args.batch_size, args.number_workers
)
# 模型 get_model(name='ResNet', number_class=2, device=device, resnet_type='resnet18')
model_a = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
model_b = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
model_c = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
# 添加全局模型
global_model = get_model(args.model_name, args.number_class, device, args.deep_backbone).to(device)
if args.resume_training:
model_a.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_a.pth')))
model_b.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_b.pth')))
model_c.load_state_dict(torch.load(os.path.join(args.save_dir, 'best_model_c.pth')))
print("已加载之前保存的模型参数继续训练")
# 优化器和损失函数
criterion = torch.nn.BCEWithLogitsLoss().to(device)
optimizer_a = optim.Adam(model_a.parameters(), lr=args.lr, weight_decay=5e-4)
optimizer_b = optim.Adam(model_b.parameters(), lr=args.lr, weight_decay=5e-4)
optimizer_c = optim.Adam(model_c.parameters(), lr=args.lr, weight_decay=5e-4)
scheduler_a = lr_scheduler.ReduceLROnPlateau(optimizer_a, mode='min', factor=0.5, patience=2, verbose=True)
scheduler_b = lr_scheduler.ReduceLROnPlateau(optimizer_b, mode='min', factor=0.5, patience=2, verbose=True)
scheduler_c = lr_scheduler.ReduceLROnPlateau(optimizer_c, mode='min', factor=0.5, patience=2, verbose=True)
# 初始化最优验证损失和模型路径
best_val_loss_a = float('inf')
best_val_loss_b = float('inf')
best_val_loss_c = float('inf')
save_dir = args.save_dir
os.makedirs(save_dir, exist_ok=True)
# 训练与验证
for epoch in range(args.epochs):
print(f'Epoch {epoch + 1}/{args.epochs}')
# 训练模型
loss_a = train_model(device, model_a, loader1, optimizer_a, criterion, epoch, 'model_a')
loss_b = train_model(device, model_b, loader2, optimizer_b, criterion, epoch, 'model_b')
loss_c = train_model(device, model_c, loader3, optimizer_c, criterion, epoch, 'model_c')
# 验证模型
val_loss_a, val_acc_a, val_auc_a = validate_model(device, model_a, val_loader, criterion, epoch, 'model_a')
val_loss_b, val_acc_b, val_auc_b = validate_model(device, model_b, val_loader, criterion, epoch, 'model_b')
val_loss_c, val_acc_c, val_auc_c = validate_model(device, model_c, val_loader, criterion, epoch, 'model_c')
if args.save_model and val_loss_a < best_val_loss_a:
best_val_loss_a = val_loss_a
torch.save(model_a.state_dict(), os.path.join(save_dir, 'best_model_a.pth'))
print(f"Best model_a saved with val_loss: {best_val_loss_a:.4f}")
if args.save_model and val_loss_b < best_val_loss_b:
best_val_loss_b = val_loss_b
torch.save(model_b.state_dict(), os.path.join(save_dir, 'best_model_b.pth'))
print(f"Best model_b saved with val_loss: {best_val_loss_b:.4f}")
if args.save_model and val_loss_c < best_val_loss_c:
best_val_loss_c = val_loss_c
torch.save(model_c.state_dict(), os.path.join(save_dir, 'best_model_c.pth'))
print(f"Best model_c saved with val_loss: {best_val_loss_c:.4f}")
print(
f'Model A - Loss: {loss_a:.4f}, Val Loss: {val_loss_a:.4f}, Val Acc: {val_acc_a:.4f}, AUC: {val_auc_a:.4f}')
print(
f'Model B - Loss: {loss_b:.4f}, Val Loss: {val_loss_b:.4f}, Val Acc: {val_acc_b:.4f}, AUC: {val_auc_b:.4f}')
print(
f'Model C - Loss: {loss_c:.4f}, Val Loss: {val_loss_c:.4f}, Val Acc: {val_acc_c:.4f}, AUC: {val_auc_c:.4f}')
# 更新模型 A 的权重,每 3 轮 1
val_acc_a, val_auc_a, val_acc_a_threshold = v3_update_model_weights(
epoch=epoch,
model_to_update=model_a,
other_models=[model_a, model_b, model_c],
global_model=global_model,
losses=[loss_a, loss_b, loss_c],
val_loader=val_loader,
device=device,
val_auc_threshold=val_auc_a,
validate_model=validate_model,
criterion=criterion,
update_frequency=1
)
# 更新模型 B 的权重,每 5 轮1
val_acc_b, val_auc_b, val_acc_b_threshold = v3_update_model_weights(
epoch=epoch,
model_to_update=model_b,
other_models=[model_a, model_b, model_c],
global_model=global_model,
losses=[loss_a, loss_b, loss_c],
val_loader=val_loader,
device=device,
val_auc_threshold=val_auc_b,
validate_model=validate_model,
criterion=criterion,
update_frequency=1
)
# 更新模型 C 的权重,每 2 轮 1
val_acc_c, val_auc_c, val_acc_c_threshold = v3_update_model_weights(
epoch=epoch,
model_to_update=model_c,
other_models=[model_a, model_b, model_c],
global_model=global_model,
losses=[loss_a, loss_b, loss_c],
val_loader=val_loader,
device=device,
val_auc_threshold=val_auc_c,
validate_model=validate_model,
criterion=criterion,
update_frequency=1
)
print("Training complete! Best models saved.")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='resnet18_psa', help='Model name')
parser.add_argument('--deep_backbone', type=str, default='*', help='deeplab backbone')
parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/train')
parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++/c40/total/val')
# parser.add_argument('--train_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/train')
# parser.add_argument('--val_path', type=str, default='/media/terminator/实验&代码/yhs/FF++_mask_sample/c23/df/val')
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--number_workers', type=int, default=8)
parser.add_argument('--number_class', type=int, default=1)
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--lr', type=float, default=0.00005)
parser.add_argument('--save_dir', type=str,
default='/media/terminator/实验&代码/yhs/output/work2/resnet18_psa/c40/total/e10',
help='Directory to save best models')
parser.add_argument('--save_model', type=bool, default=True, help='是否保存最优模型')
parser.add_argument('--resume_training', type=bool, default=False, help='是否从保存的模型参数继续训练')
args = parser.parse_args()
main(args)

View File

@@ -1,217 +0,0 @@
import os
from PIL import Image
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset, random_split
from collections import Counter
from torch.utils.data import DataLoader, Subset
from torchvision import transforms, datasets
import os
from sklearn.model_selection import train_test_split
class CustomImageDataset(Dataset):
def __init__(self, root_dir, transform=None):
self.root_dir = root_dir
self.transform = transform
self.image_paths = []
self.labels = []
# 遍历 root_dir 下的子文件夹 0 和 1
for label in [0, 1]:
folder_path = os.path.join(root_dir, str(label))
if os.path.isdir(folder_path):
for img_name in os.listdir(folder_path):
img_path = os.path.join(folder_path, img_name)
self.image_paths.append(img_path)
self.labels.append(label)
# 打印用于调试的图像路径和标签
# print("Loaded image paths and labels:")
# for path, label in zip(self.image_paths[:5], self.labels[:5]):
# print(f"Path: {path}, Label: {label}")
# print(f"Total samples: {len(self.image_paths)}\n")
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img_path = self.image_paths[idx]
label = self.labels[idx]
image = Image.open(img_path).convert("RGB")
if self.transform:
image = self.transform(image)
return image, label
def get_test_data(test_image_path, batch_size, nw):
data_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# test_dataset = datasets.ImageFolder(root=test_image_path, transform=data_transform)
test_dataset = CustomImageDataset(root_dir=test_image_path, transform=data_transform)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=nw)
return test_loader
def get_Onedata(train_image_path, val_image_path, batch_size, num_workers):
"""
加载完整的训练数据集和验证数据集。
"""
data_transform = {
"train": transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
# 创建训练和验证数据集
train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"])
val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"])
# 创建数据加载器
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_loader, val_loader
def get_data(train_image_path, val_image_path, batch_size, num_workers):
data_transform = {
"train": transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"val": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"test": transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
train_dataset = CustomImageDataset(root_dir=train_image_path, transform=data_transform["train"])
val_dataset = CustomImageDataset(root_dir=val_image_path, transform=data_transform["val"])
# 切分数据集为三个等分
train_len = (len(train_dataset) // 3) * 3
train_dataset_truncated = torch.utils.data.Subset(train_dataset, range(train_len))
subset_len = train_len // 3
dataset1, dataset2, dataset3 = random_split(train_dataset_truncated, [subset_len] * 3)
loader1 = DataLoader(dataset1, batch_size=batch_size, shuffle=True, num_workers=num_workers)
loader2 = DataLoader(dataset2, batch_size=batch_size, shuffle=True, num_workers=num_workers)
loader3 = DataLoader(dataset3, batch_size=batch_size, shuffle=True, num_workers=num_workers)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return loader1, loader2, loader3, subset_len, val_loader
def get_Fourdata(train_path, val_path, batch_size, num_workers):
"""
加载训练集和验证集。
包括 4 个客户端验证集df、f2f、fs、nt和 1 个全局验证集。
Args:
train_path (str): 训练数据路径
val_path (str): 验证数据路径
batch_size (int): 批量大小
num_workers (int): DataLoader 的工作线程数
Returns:
tuple: 包含 4 个客户端训练和验证加载器,以及全局验证加载器
"""
# 数据预处理
train_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 定义 4 个客户端数据集路径
client_names = ['df', 'f2f', 'fs', 'nt']
client_train_loaders = []
client_val_loaders = []
for client in client_names:
client_train_path = os.path.join(train_path, client)
client_val_path = os.path.join(val_path, client)
# 加载客户端训练数据
train_dataset = datasets.ImageFolder(root=client_train_path, transform=train_transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
# 加载客户端验证数据
val_dataset = datasets.ImageFolder(root=client_val_path, transform=val_transform)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
client_train_loaders.append(train_loader)
client_val_loaders.append(val_loader)
# 全局验证集
global_val_dataset = datasets.ImageFolder(root=val_path, transform=val_transform)
global_val_loader = DataLoader(global_val_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return (*client_train_loaders, *client_val_loaders, global_val_loader)
def main():
# 设置参数
train_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/train"
val_image_path = "/media/terminator/实验&代码/yhs/FF++_mask/c23/f2f/val"
batch_size = 4
num_workers = 2
# 获取数据加载器
loader1, loader2, loader3, subset_len, val_loader = get_data(train_image_path, val_image_path, batch_size,
num_workers)
# 统计标签数量和类型
train_labels = []
for dataset in [loader1, loader2, loader3]:
for _, labels in dataset:
train_labels.extend(labels.tolist())
val_labels = []
for _, labels in val_loader:
val_labels.extend(labels.tolist())
# 使用 Counter 统计标签数量
train_label_counts = Counter(train_labels)
val_label_counts = Counter(val_labels)
# 打印统计结果
print("Training Dataset - Label Counts:", train_label_counts)
print("Validation Dataset - Label Counts:", val_label_counts)
print("Label Types in Training:", set(train_labels))
print("Label Types in Validation:", set(val_labels))
if __name__ == "__main__":
main()

View File

@@ -1,57 +0,0 @@
import torch
from torch import nn
from torchvision import models
from Deeplab.deeplab import DeepLab_F
from Deeplab.resnet_psa import BasicBlockWithPSA
from Deeplab.resnet_psa_v2 import ResNet
from model_base.efNet_base_model import DeepLab
from model_base.efficientnet import EfficientNet
from model_base.resnet_more import CustomResNet
from model_base.xcption import Xception
def get_model(name, number_class, device, backbone):
"""
根据指定的模型名称加载模型,并根据任务类别数调整最后的分类层。
Args:
name (str): 模型名称 ('Vgg', 'ResNet', 'EfficientNet', 'Xception')。
number_class (int): 分类类别数。
device (torch.device): 设备 ('cuda' or 'cpu')。
resnet_type (str): ResNet类型 ('resnet18', 'resnet34', 'resnet50', 'resnet101', etc.)。
Returns:
nn.Module: 经过修改的模型。
"""
if name == 'Vgg':
model = models.vgg16_bn(pretrained=True).to(device)
model.classifier[6] = nn.Linear(model.classifier[6].in_features, number_class)
elif name == 'ResNet18':
model = CustomResNet(resnet_type='resnet18', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet34':
model = CustomResNet(resnet_type='resnet34', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet50':
model = CustomResNet(resnet_type='resnet50', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet101':
model = CustomResNet(resnet_type='resnet101', num_classes=number_class, pretrained=True).to(device)
elif name == 'ResNet152':
model = CustomResNet(resnet_type='resnet152', num_classes=number_class, pretrained=True).to(device)
elif name == 'EfficientNet':
# 使用自定义的 DeepLab 类加载 EfficientNet
model = DeepLab(backbone='efficientnet', num_classes=number_class).to(device)
elif name == 'Xception':
model = Xception(
in_planes=3,
num_classes=number_class,
pretrained=True,
pretrained_path="/home/terminator/1325/yhs/fedLeaning/pre_model/xception-43020ad28.pth"
).to(device)
elif name == 'DeepLab':
# 使用自定义的 DeepLab 类加载 EfficientNet
model = DeepLab_F(num_classes=1, backbone=backbone).to(device)
elif name == 'resnet18_psa':
model = ResNet(BasicBlockWithPSA, [2, 2, 2, 2], number_class)
else:
raise ValueError(f"Model {name} is not supported.")
return model

View File

@@ -1,368 +0,0 @@
import numpy as np
import torch
from tqdm import tqdm
from sklearn.metrics import roc_auc_score, accuracy_score
import copy
import torch.nn.functional as F
import random
def train_deepmodel(device, model, loader, optimizer, criterion, epoch, model_name):
model.train()
running_loss = 0.0
corrects = 0.0
alpha = 1
beta = 0.1
for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
optimizer.zero_grad()
outputs, re_img = model(inputs)
loss = criterion(outputs.squeeze(), labels.float())
loss_F1 = F.l1_loss(re_img, inputs)
loss = alpha * loss + beta * loss_F1
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(loader)
print(f'{model_name} Training Loss: {avg_loss:.4f}')
return avg_loss
def validate_deepmodel(device, model, loader, criterion, epoch, model_name):
model.eval()
running_loss = 0.0
correct, total = 0, 0
all_labels, all_preds = [], []
val_corrects = 0.0
alpha = 1
beta = 0.1
with torch.no_grad():
for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
outputs, re_img = model(inputs)
# 将 logits 转换为预测
predicted = torch.sigmoid(outputs).data
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# loss = criterion(outputs.squeeze(), labels.float())
loss = criterion(outputs.squeeze(), labels.float())
loss_F1 = F.l1_loss(re_img, inputs)
loss = alpha * loss + beta * loss_F1
running_loss += loss.item()
auc = roc_auc_score(all_labels, all_preds)
predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组
acc = accuracy_score(all_labels, predicted_labels)
avg_loss = running_loss / len(loader)
print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}')
return avg_loss, acc, auc
def test_deepmodel(device, model, loader):
model.eval()
all_labels, all_preds = [], []
with torch.no_grad():
for inputs, labels in tqdm(loader, desc=f'Testing', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
outputs, re_img = model(inputs)
predicted = torch.sigmoid(outputs).data # 将 logits 转换为预测
# 收集预测值和真实标签
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# 将预测值转换为二值标签
predicted_labels = (np.array(all_preds) >= 0.5).astype(int)
# 计算准确率和AUC
acc = accuracy_score(all_labels, predicted_labels)
auc = roc_auc_score(all_labels, all_preds)
print(f'Test Accuracy: {acc:.4f}, Test AUC: {auc:.4f}')
return acc, auc
# def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
# model.train()
# running_loss = 0.0
# for i, (inputs, labels) in enumerate(tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch')):
# inputs, labels = inputs.float().to(device), labels.float().to(device) # 确保数据格式正确
# optimizer.zero_grad()
#
# outputs = model(inputs)
# loss = criterion(outputs.squeeze(), labels)
#
# # 随机打印部分输出和标签,检查格式
# if i % 10 == 0: # 每100个批次打印一次
# print(f"Batch {i} - Sample Output: {outputs[0].item():.4f}, Sample Label: {labels[0].item()}")
#
# # 检查损失值是否异常
# if loss.item() < 0:
# print(f"Warning: Negative loss detected at batch {i}. Loss: {loss.item()}")
#
# loss.backward()
# optimizer.step()
#
# running_loss += loss.item()
#
# avg_loss = running_loss / len(loader)
# print(f'{model_name} Training Loss: {avg_loss:.4f}')
# return avg_loss
def train_model(device, model, loader, optimizer, criterion, epoch, model_name):
model.train()
running_loss = 0.0
for inputs, labels in tqdm(loader, desc=f'Training {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs.squeeze(), labels.float())
loss.backward()
optimizer.step()
running_loss += loss.item()
avg_loss = running_loss / len(loader)
print(f'{model_name} Training Loss: {avg_loss:.4f}')
return avg_loss
def validate_model(device, model, loader, criterion, epoch, model_name):
model.eval()
running_loss = 0.0
correct, total = 0, 0
all_labels, all_preds = [], []
with torch.no_grad():
for inputs, labels in tqdm(loader, desc=f'Validating {model_name} Epoch {epoch + 1}', unit='batch'):
inputs, labels = inputs.float().to(device), labels.to(device) # 确保数据在 device 上
outputs = model(inputs)
# 将 logits 转换为预测
predicted = torch.sigmoid(outputs).data
all_preds.extend(predicted.cpu().numpy())
all_labels.extend(labels.cpu().numpy())
# loss = criterion(outputs.squeeze(), labels.float())
loss = criterion(outputs.squeeze(), labels.float())
running_loss += loss.item()
auc = roc_auc_score(all_labels, all_preds)
predicted_labels = (np.array(all_preds) >= 0.5).astype(int) # 确保转换为 NumPy 数组
acc = accuracy_score(all_labels, predicted_labels)
avg_loss = running_loss / len(loader)
print(f'{model_name} Validation Loss: {avg_loss:.4f}, Accuracy: {acc:.4f}, AUC: {auc:.4f}')
return avg_loss, acc, auc
# 权重聚合函数
def aggregate_weights(weights_list, alpha=1 / 3, beta=1 / 3, gamma=1 / 3):
new_state_dict = copy.deepcopy(weights_list[0]) # 从模型a复制权重结构
for key in new_state_dict.keys():
new_state_dict[key] = (alpha * weights_list[0][key] +
beta * weights_list[1][key] +
gamma * weights_list[2][key])
return new_state_dict
def v3_update_model_weights(
epoch,
model_to_update,
other_models,
global_model,
losses,
val_loader,
device,
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
validate_model,
criterion,
update_frequency
):
"""
根据给定的条件更新模型的权重。
参数:
epoch (int): 当前训练轮次。
model_to_update: 需要更新的模型。
other_models (list): 其他模型列表,用于计算全局模型权重。
global_model: 全局模型。
losses (list): 各模型的损失值列表。
val_loader: 验证数据的 DataLoader。
device: 设备 ('cuda''cpu')。
val_auc_threshold (float): 当前需要更新模型的验证 AUC。
aggregate_weights (function): 权重聚合函数。
validate_model (function): 验证模型的函数。
update_frequency (int): 权重更新的频率。
返回:
val_acc (float): 全局模型的验证精度。
val_auc (float): 全局模型的验证 AUC。
updated_val_auc_threshold (float): 更新后的验证 AUC。
"""
if (epoch + 1) % update_frequency == 0:
# 获取所有模型的权重
all_weights = [model.state_dict() for model in other_models]
avg_weights = aggregate_weights(all_weights) # 聚合权重
# 更新全局模型权重
global_model.load_state_dict(avg_weights)
# 计算加权平均损失
weighted_loss = sum(loss * 0.33 for loss in losses)
print(f"Weighted Average Loss: {weighted_loss:.4f}")
# 验证全局模型
val_loss, val_acc, val_auc = validate_model(device, global_model, val_loader, criterion, epoch, 'global_model')
print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}')
# 如果全局模型的 AUC 更高,则更新目标模型
if val_auc > val_auc_threshold:
print(f'Updating model at epoch {epoch + 1}')
model_to_update.load_state_dict(global_model.state_dict())
val_auc_threshold = val_auc # 更新 AUC 阈值
return val_acc, val_auc, val_auc_threshold
return None, None, val_auc_threshold
def update_model_weights(
epoch,
model_to_update,
other_models,
global_model,
losses,
val_loader,
device,
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
validate_model,
criterion,
update_frequency
):
"""
根据给定的条件更新模型的权重。
参数:
epoch (int): 当前训练轮次。
model_to_update: 需要更新的模型。
other_models (list): 其他模型列表,用于计算全局模型权重。
global_model: 全局模型。
losses (list): 各模型的损失值列表。
val_loader: 验证数据的 DataLoader。
device: 设备 ('cuda''cpu')。
val_auc_threshold (float): 当前需要更新模型的验证 AUC。
aggregate_weights (function): 权重聚合函数。
validate_model (function): 验证模型的函数。
update_frequency (int): 权重更新的频率。
返回:
val_acc (float): 全局模型的验证精度。
val_auc (float): 全局模型的验证 AUC。
updated_val_auc_threshold (float): 更新后的验证 AUC。
"""
if (epoch + 1) % update_frequency == 0:
# 获取所有模型的权重
all_weights = [model.state_dict() for model in other_models]
avg_weights = aggregate_weights(all_weights) # 聚合权重
# 更新全局模型权重
global_model.load_state_dict(avg_weights)
# 计算加权平均损失
weighted_loss = sum(loss * 0.33 for loss in losses)
print(f"Weighted Average Loss: {weighted_loss:.4f}")
# 验证全局模型
val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch,
'global_model')
print(f'global_model Validation Accuracy: {val_acc:.4f}, global_model Validation AUC: {val_auc:.4f}')
# 如果全局模型的 AUC 更高,则更新目标模型
if val_auc > val_auc_threshold:
print(f'Updating model at epoch {epoch + 1}')
model_to_update.load_state_dict(global_model.state_dict())
val_auc_threshold = val_auc # 更新 AUC 阈值
return val_acc, val_auc, val_auc_threshold
return None, None, val_auc_threshold
def f_update_model_weights(
epoch,
model_to_update,
other_models,
global_model,
losses,
val_loader,
device,
val_auc_threshold, # 当前需要更新模型的验证 AUC 阈值
aggregate_weights, # 权重聚合函数
validate_model,
criterion,
update_frequency
):
"""
根据给定的条件更新模型的权重。
参数:
epoch (int): 当前训练轮次。
model_to_update: 需要更新的模型。
other_models (list): 其他模型列表,用于计算全局模型权重。
global_model: 全局模型。
losses (list): 各模型的损失值列表。
val_loader: 验证数据的 DataLoader。
device: 设备 ('cuda''cpu')。
val_auc_threshold (float): 当前需要更新模型的验证 AUC 阈值。
aggregate_weights (function): 权重聚合函数。
validate_model (function): 验证模型的函数。
criterion: 损失函数。
update_frequency (int): 权重更新的频率。
返回:
val_acc (float): 全局模型的验证精度。
val_auc (float): 全局模型的验证 AUC。
updated_val_auc_threshold (float): 更新后的验证 AUC 阈值。
"""
# 每隔指定的 epoch 更新一次模型权重
if (epoch + 1) % update_frequency == 0:
print(f"\n[Epoch {epoch + 1}] Updating global model weights...")
# 获取其他模型的权重
all_weights = [model.state_dict() for model in other_models]
# 使用聚合函数计算全局权重
avg_weights = aggregate_weights(all_weights)
print("Global model weights aggregated.")
# 更新全局模型权重
global_model.load_state_dict(avg_weights)
# 计算加权平均损失
weighted_loss = sum(loss * (1 / len(losses)) for loss in losses) # 平均加权
print(f"Weighted Average Loss: {weighted_loss:.4f}")
# 验证全局模型性能
val_loss, val_acc, val_auc = validate_deepmodel(device, global_model, val_loader, criterion, epoch,
'global_model')
print(f"[Global Model] Validation Loss: {val_loss:.4f}, Accuracy: {val_acc:.4f}, AUC: {val_auc:.4f}")
# 如果全局模型 AUC 高于阈值,则更新目标模型权重
if val_auc > val_auc_threshold:
print(f"Global model AUC improved ({val_auc:.4f} > {val_auc_threshold:.4f}). Updating target model.")
model_to_update.load_state_dict(global_model.state_dict())
val_auc_threshold = val_auc # 更新 AUC 阈值
else:
print(
f"Global model AUC did not improve ({val_auc:.4f} <= {val_auc_threshold:.4f}). No update to target model.")
return val_acc, val_auc, val_auc_threshold
# 如果未到达更新频率,返回当前的 AUC 阈值
return None, None, val_auc_threshold

Binary file not shown.

View File

@@ -0,0 +1,49 @@
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
# Model docs: https://docs.ultralytics.com/models/yolov8
# Task docs: https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS
s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS
m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS
l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS
x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- [-1, 3, C2f, [128, True]]
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- [-1, 6, C2f, [256, True]]
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- [-1, 6, C2f, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- [-1, 3, C2f, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 9
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
- [-1, 3, C2f, [512]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 12], 1, Concat, [1]] # cat head P4
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 9], 1, Concat, [1]] # cat head P5
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

View File

@@ -0,0 +1,252 @@
import glob
import os
from pathlib import Path
import json
from pydoc import cli
from threading import local
import yaml
from ultralytics import YOLO
import copy
import torch
# ------------ 新增联邦学习工具函数 ------------
def federated_avg(global_model, client_weights):
"""联邦平均核心算法"""
# 计算总样本数
total_samples = sum(n for _, n in client_weights)
if total_samples == 0:
raise ValueError("Total number of samples must be positive.")
# DEBUG: global_dict
# print(global_model)
# 获取YOLO底层PyTorch模型参数
global_dict = global_model.model.state_dict()
# 提取所有客户端的 state_dict 和对应样本数
state_dicts, sample_counts = zip(*client_weights)
# 克隆参数并脱离计算图
global_dict_copy = {
k: v.clone().detach().requires_grad_(False) for k, v in global_dict.items()
}
# 聚合可训练且存在的参数
for key in global_dict_copy:
# if global_dict_copy[key].dtype != torch.float32:
# continue
# if any(
# x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
# ):
# continue
# 检查所有客户端是否包含当前键
all_clients_have_key = all(key in sd for sd in state_dicts)
if all_clients_have_key:
# 计算每个客户端的加权张量
# weighted_tensors = [
# client_state[key].float() * (sample_count / total_samples)
# for client_state, sample_count in zip(state_dicts, sample_counts)
# ]
weighted_tensors = []
for client_state, sample_count in zip(state_dicts, sample_counts):
weight = sample_count / total_samples # 计算权重
weighted_tensor = client_state[key].float() * weight # 加权张量
weighted_tensors.append(weighted_tensor)
# 聚合加权张量并更新全局参数
global_dict_copy[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
# else:
# print(f"错误: 键 {key} 在部分客户端缺失,已保留全局参数")
# 终止训练或记录日志
# raise KeyError(f"键 {key} 缺失")
# 加载回YOLO模型
global_model.model.load_state_dict(global_dict_copy, strict=True)
# global_model.model.train()
# with torch.no_grad():
# global_model.model.load_state_dict(global_dict_copy, strict=True)
# 定义多个关键层
MONITOR_KEYS = [
"model.0.conv.weight",
"model.1.conv.weight",
"model.3.conv.weight",
"model.5.conv.weight",
"model.7.conv.weight",
"model.9.cv1.conv.weight",
"model.12.cv1.conv.weight",
"model.15.cv1.conv.weight",
"model.18.cv1.conv.weight",
"model.21.cv1.conv.weight",
"model.22.dfl.conv.weight",
]
with open("aggregation_check.txt", "a") as f:
f.write("\n=== 参数聚合检查 ===\n")
for key in MONITOR_KEYS:
# if key not in global_dict:
# continue
# if not all(key in sd for sd in state_dicts):
# continue
# 计算聚合后均值
aggregated_mean = global_dict[key].mean().item()
# 计算各客户端均值
client_means = [sd[key].float().mean().item() for sd in state_dicts]
with open("aggregation_check.txt", "a") as f:
f.write(f"'{key}' 聚合后均值: {aggregated_mean:.6f}\n")
f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n")
f.write(f"客户端最大差异: {max(client_means) - min(client_means):.6f}\n\n")
return global_model
# ------------ 修改训练流程 ------------
def federated_train(num_rounds, clients_data):
# ========== 初始化指标记录 ==========
metrics = {
"round": [],
"val_mAP": [], # 每轮验证集mAP
# "train_loss": [], # 每轮平均训练损失
"client_mAPs": [], # 各客户端本地模型在验证集上的mAP
"communication_cost": [], # 每轮通信开销MB
}
# 初始化全局模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
global_model = (
YOLO("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.yaml")
.load("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.pt")
.to(device)
)
global_model.model.model[-1].nc = 1 # 设置检测类别数为1
# global_model.model.train.ema.enabled = False
# 克隆全局模型
local_model = copy.deepcopy(global_model)
for _ in range(num_rounds):
client_weights = []
# 各客户端的训练损失
# client_losses = []
# DEBUG: 检查全局模型参数
# global_dict = global_model.model.state_dict()
# print(global_dict.keys())
# 每个客户端本地训练
for data_path in clients_data:
# 统计本地训练样本数
with open(data_path, "r") as f:
config = yaml.safe_load(f)
# Resolve img_dir relative to the YAML file's location
yaml_dir = os.path.dirname(data_path)
img_dir = os.path.join(
yaml_dir, config.get("train", data_path)
) # 从配置文件中获取图像目录
# print(f"Image directory: {img_dir}")
num_samples = (
len(glob.glob(os.path.join(img_dir, "*.jpg")))
+ len(glob.glob(os.path.join(img_dir, "*.png")))
+ len(glob.glob(os.path.join(img_dir, "*.jpeg")))
)
# print(f"Number of images: {num_samples}")
local_model.model.load_state_dict(
global_model.model.state_dict(), strict=True
)
# 本地训练(保持你的原有参数设置)
local_model.train(
name=f"train{_ + 1}", # 当前轮次
data=data_path,
# model=local_model,
epochs=16, # 每轮本地训练多少个epoch
# save_period=16,
imgsz=768, # 图像大小
verbose=False, # 关闭冗余输出
batch=-1, # 批大小
workers=6, # 工作线程数
)
# 记录客户端训练损失
# client_loss = results.results_dict['train_loss']
# client_losses.append(client_loss)
# 收集模型参数及样本数
client_weights.append((local_model.model.state_dict(), num_samples))
# 聚合参数更新全局模型
global_model = federated_avg(global_model, client_weights)
# DEBUG: 检查全局模型参数
# keys = global_model.model.state_dict().keys()
# ========== 评估全局模型 ==========
# 复制全局模型以避免在评估时修改参数
val_model = copy.deepcopy(global_model)
# 评估全局模型在验证集上的性能
with torch.no_grad():
val_results = val_model.val(
data="/mnt/DATA/uav_dataset_old/UAVdataset/fed_data.yaml", # 指定验证集配置文件
imgsz=768, # 图像大小
batch=16, # 批大小
verbose=False, # 关闭冗余输出
)
# 丢弃评估模型
del val_model
# DEBUG: 检查全局模型参数
# if keys != global_model.model.state_dict().keys():
# print("模型参数不一致!")
val_mAP = val_results.box.map # 获取mAP@0.5
# 计算平均训练损失
# avg_train_loss = sum(client_losses) / len(client_losses)
# 计算通信开销(假设传输全部模型参数)
model_size = sum(p.numel() * 4 for p in global_model.model.parameters()) / (
1024**2
) # MB
# 记录到指标容器
metrics["round"].append(_ + 1)
metrics["val_mAP"].append(val_mAP)
# metrics['train_loss'].append(avg_train_loss)
metrics["communication_cost"].append(model_size)
# 打印当前轮次结果
with open("aggregation_check.txt", "a") as f:
f.write(f"\n[Round {_ + 1}/{num_rounds}]\n")
f.write(f"Validation mAP@0.5: {val_mAP:.4f}\n")
# f.write(f"Average Train Loss: {avg_train_loss:.4f}")
f.write(f"Communication Cost: {model_size:.2f} MB\n\n")
return global_model, metrics
if __name__ == "__main__":
# 联邦训练配置
clients_config = [
"/mnt/DATA/uav_fed/train1/train1.yaml", # 客户端1数据路径
"/mnt/DATA/uav_fed/train2/train2.yaml", # 客户端2数据路径
]
# 使用本地数据集进行测试
# clients_config = [
# "/home/image1325/DATA/Graduation-Project/dataset/train1/train1.yaml",
# "/home/image1325/DATA/Graduation-Project/dataset/train2/train2.yaml",
# ]
# 运行联邦训练
final_model, metrics = federated_train(num_rounds=10, clients_data=clients_config)
# 保存最终模型
final_model.save("yolov8n_federated.pt")
# final_model.export(format="onnx") # 导出为ONNX格式
with open("metrics.json", "w") as f:
json.dump(metrics, f, indent=4)

View File

@@ -1,61 +1,46 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time :
# @Author :
# @File : Image_Registration_test.py
import time
import argparse
import cv2
import numpy as np
from ultralytics import YOLO
from skimage.metrics import structural_similarity as ssim
# 添加YOLOv8模型初始化
yolo_model = YOLO("yolov8n.pt") # 可替换为yolov8s/m/l等
yolo_model.to('cuda') # 启用GPU加速(可选)
yolo_model = YOLO("best.pt") # 可替换为yolov8s/m/l等
yolo_model.to('cuda') # 启用GPU加速
def sift_registration(img1, img2):
img1gray = cv2.normalize(img1, dst=None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX).astype(np.uint8)
img2gray = img2
sift = cv2.SIFT_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1gray, None)
kp2, des2 = sift.detectAndCompute(img2gray, None)
# FLANN parameters
FLANN_INDEX_KDTREE = 1
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1, des2, k=2)
good = []
pts1 = []
pts2 = []
for i, (m, n) in enumerate(matches):
if m.distance < 0.75 * n.distance:
good.append(m)
pts2.append(kp2[m.trainIdx].pt)
pts1.append(kp1[m.queryIdx].pt)
MIN_MATCH_COUNT = 4
if len(good) > MIN_MATCH_COUNT:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
else:
print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
M = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=np.float64)
if M is None:
M = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]], dtype=np.float64)
return 1, M[0], len(pts2)
def calculate_en(img):
"""计算信息熵(处理灰度图)"""
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
hist = hist / hist.sum()
return -np.sum(hist * np.log2(hist + 1e-10))
def calculate_sf(img):
"""计算空间频率(处理灰度图)"""
rf = np.sqrt(np.mean(np.square(np.diff(img, axis=0))))
cf = np.sqrt(np.mean(np.square(np.diff(img, axis=1))))
return np.sqrt(rf ** 2 + cf ** 2)
def calculate_mi(img1, img2):
"""计算互信息(处理灰度图)"""
hist_2d = np.histogram2d(img1.ravel(), img2.ravel(), 256)[0]
pxy = hist_2d / hist_2d.sum()
px = np.sum(pxy, axis=1)
py = np.sum(pxy, axis=0)
return np.sum(pxy * np.log2(pxy / (px[:, None] * py[None, :] + 1e-10) + 1e-10))
def calculate_ssim(img1, img2):
"""计算SSIM处理灰度图"""
return ssim(img1, img2, data_range=255)
# 裁剪线性RGB对比度拉伸去掉2%百分位以下的数去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
@@ -93,6 +78,10 @@ def Images_matching(img_base, img_target):
"""
start = time.time()
orb = cv2.ORB_create()
# 对可见光图像进行对比度拉伸
# img_base = truncated_linear_stretch(img_base)
img_base = cv2.cvtColor(img_base, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
# 使用sift算子计算特征点和特征点周围的特征向量
@@ -100,7 +89,9 @@ def Images_matching(img_base, img_target):
kp1, des1 = sift.detectAndCompute(img_base, None) # 1136 1136, 64
kp2, des2 = sift.detectAndCompute(img_target, None)
en1 = time.time()
# print(en1 - st1, "特征提取")
# 进行KNN特征匹配
# FLANN_INDEX_KDTREE = 0 # 建立FLANN匹配器的参数
# indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) # 配置索引密度树的数量为5
@@ -112,6 +103,7 @@ def Images_matching(img_base, img_target):
# search_params = dict(checks=50)
# flann = cv2.FlannBasedMatcher(index_params, search_params)
# matches = flann.knnMatch(des1, des2, k=2)
st2 = time.time()
matcher = cv2.BFMatcher()
matches = matcher.knnMatch(des1, des2, k=2)
@@ -125,9 +117,10 @@ def Images_matching(img_base, img_target):
src_pts = np.array([kp1[m.queryIdx].pt for m in good]) # 查询图像的特征描述子索引 # 134, 2
dst_pts = np.array([kp2[m.trainIdx].pt for m in good]) # 训练(模板)图像的特征描述子索引
if len(src_pts) <= 4:
print("Not enough matches are found - {}/{}".format(len(good), 4))
return 0, None, 0
else:
# print(len(dst_pts), len(src_pts), "配准坐标点")
print(len(dst_pts), len(src_pts), "配准坐标点")
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
end = time.time()
times = end - start
@@ -181,61 +174,181 @@ def main(matchimg_vi, matchimg_in):
orimg_vi = matchimg_vi
orimg_in = matchimg_in
h, w = orimg_vi.shape[:2] # 480 640
flag, H, dot = Images_matching(matchimg_vi, matchimg_in) # (3, 3)//获取对应的配准坐标点
# (3, 3)//获取对应的配准坐标点
flag, H, dot = Images_matching(matchimg_vi, matchimg_in)
if flag == 0:
return 0, None, 0
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
else:
# 配准处理
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
# matched_ni,left,right,top,bottom=removeBlackBorder(matched_ni)
matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
# 裁剪可见光图像
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
# 不裁剪可见光图像
fusion = fusions(orimg_vi, matched_ni)
# 转换为灰度计算指标
fusion_gray = cv2.cvtColor(fusion, cv2.COLOR_RGB2GRAY)
cropped_vi_gray = cv2.cvtColor(orimg_vi, cv2.COLOR_BGR2GRAY)
matched_ni_gray = matched_ni # 红外图已经是灰度
# 计算指标
en = calculate_en(fusion_gray)
sf = calculate_sf(fusion_gray)
mi_visible = calculate_mi(fusion_gray, cropped_vi_gray)
mi_infrared = calculate_mi(fusion_gray, matched_ni_gray)
mi_total = mi_visible + mi_infrared
# 添加SSIM容错处理
try:
ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
ssim_avg = (ssim_visible + ssim_infrared) / 2
except Exception as ssim_error:
print(f"SSIM计算错误: {ssim_error}")
ssim_avg = -1 # 用-1表示计算失败
# YOLOv8目标检测
results = yolo_model(fusion) # 输入融合后的图像
annotated_image = results[0].plot() # 绘制检测框
return 1, annotated_image, dot # 返回带检测结果的图像
# 返回带检测结果的图像
return 1, annotated_image, dot, en, sf, mi_total, ssim_avg
except Exception as e:
print(f"Error in fusion/detection: {e}")
return 0, None, 0
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
def parse_args():
# 输入可见光和红外图像路径
visible_image_path = "./test/visible/visibleI0195.jpg" # 可见光图片路径
infrared_image_path = "./test/infrared/infraredI0195.jpg" # 红外图片路径
# 输入可见光和红外视频路径
visible_video_path = "./test/visible.mp4" # 可见光视频路径
infrared_video_path = "./test/infrared.mp4" # 红外视频路径
"""解析命令行参数"""
parser = argparse.ArgumentParser(description='图像融合与目标检测')
parser.add_argument('--mode', type=str, choices=['video', 'image'], default='image',
help='输入模式video视频流 或 image静态图片')
# 区分摄像头或视频文件
parser.add_argument('--source', type=str, choices=['camera', 'file'],
help='视频输入类型camera摄像头或 file视频文件')
# 视频模式参数
parser.add_argument('--video1', type=str, default=visible_video_path,
help='可见光视频路径仅在source=file时需要')
parser.add_argument('--video2', type=str, default=infrared_video_path,
help='红外视频路径仅在source=file时需要')
# 摄像头模式参数
parser.add_argument('--camera_id1', type=int, default=0,
help='可见光摄像头ID仅在source=camera时需要默认0')
parser.add_argument('--camera_id2', type=int, default=1,
help='红外摄像头ID仅在source=camera时需要默认1')
parser.add_argument('--output', type=str, default='output.mp4',
help='输出视频路径仅在video模式需要')
# 图片模式参数
parser.add_argument('--visible', type=str, default=visible_image_path,
help='可见光图片路径仅在image模式需要')
parser.add_argument('--infrared', type=str, default=infrared_image_path,
help='红外图片路径仅在image模式需要')
return parser.parse_args()
if __name__ == '__main__':
time_all = 0
dots = 0
i = 0
fourcc = cv2.VideoWriter_fourcc(*'XVID')
capture = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/infrared.mp4")
capture2 = cv2.VideoCapture("video/20190926_141816_1_8/20190926_141816_1_8/visible.mp4")
fps = capture.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('output2.mp4', fourcc, fps, (640, 480))
# 持续读取摄像头数据
while True:
read_code, frame = capture.read() # 红外帧
read_code2, frame2 = capture2.read() # 可见光帧
if not read_code:
break
i += 1
# frame = cv2.resize(frame, (1920, 1080))
# frame2 = cv2.resize(frame2, (640, 512))
args = parse_args()
if args.mode == 'video':
if args.source == 'file':
# ========== 视频流处理模式 ==========
if not args.video1 or not args.video2:
raise ValueError("视频模式需要指定 --video1 和 --video2 参数")
capture = cv2.VideoCapture(args.video2)
capture2 = cv2.VideoCapture(args.video1)
elif args.source == 'camera':
# ========== 摄像头处理模式 ==========
capture = cv2.VideoCapture(args.camera_id1)
capture2 = cv2.VideoCapture(args.camera_id2)
else:
raise ValueError("必须指定 --source 参数camera 或 file")
# 公共视频处理逻辑
fps = capture.get(cv2.CAP_PROP_FPS) if args.source == 'file' else 30
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(args.output, fourcc, fps, (640, 480))
while True:
ret1, frame_vi = capture.read() # 可见光帧
ret2, frame_ir = capture2.read() # 红外帧
if not ret1 or not ret2:
break
# 红外图像转灰度
frame_ir_gray = cv2.cvtColor(frame_ir, cv2.COLOR_BGR2GRAY)
# 执行融合与检测
flag, fusion, _ = main(frame_vi, frame_ir_gray)
if flag == 1:
cv2.imshow("Fusion with YOLOv8 Detection", fusion)
out.write(fusion)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
capture.release()
capture2.release()
out.release()
cv2.destroyAllWindows()
elif args.mode == 'image':
# ========= 图片处理模式 ==========
if not args.infrared or not args.visible:
raise ValueError("图片模式需要指定 --visible 和 --infrared 参数")
# 读取图像
img_visible = cv2.imread(args.visible)
img_infrared = cv2.imread(args.infrared)
if img_visible is None or img_infrared is None:
print("Error: 图片加载失败,请检查路径!")
exit()
# 转换为灰度图(红外图像处理)
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
# 调用main函数进行融合检测
flag, fusion, dot = main(frame2, frame_gray)
# 行融合检测
flag, fusion_result, dot, en, sf, mi, ssim_val = main(img_visible, img_inf_gray)
if flag == 1:
# 显示带检测结果的融合图像
cv2.imshow("Fusion with YOLOv8 Detection", fusion)
out.write(fusion)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
capture.release()
capture2.release()
cv2.destroyAllWindows()
ave = time_all / i
print(ave, "平均时间")
cv2.destroyAllWindows()
# 展示评价指标
print("\n======== 融合质量评价 ========")
print(f"信息熵EN: {en:.2f}")
print(f"空间频率SF: {sf:.2f}")
print(f"互信息MI: {mi:.2f}")
# 条件显示SSIM
if ssim_val >= 0:
print(f"结构相似性SSIM: {ssim_val:.4f}")
else:
print("结构相似性SSIM: 计算失败(已跳过)")
print(f"配准点数: {dot}")
# 显示并保存结果
# cv2.imshow("Fusion with Detection", fusion_result)
cv2.imwrite("output/fusion_result.jpg", fusion_result)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
else:
print("融合失败!")

Binary file not shown.

After

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

41
requirements.txt Normal file
View File

@@ -0,0 +1,41 @@
certifi==2025.1.31
charset-normalizer==3.4.1
colorama==0.4.6
contourpy==1.3.2
cycler==0.12.1
filelock==3.18.0
fonttools==4.57.0
fsspec==2025.3.2
idna==3.10
Jinja2==3.1.6
kiwisolver==1.4.8
MarkupSafe==3.0.2
matplotlib==3.10.1
mpmath==1.3.0
networkx==3.4.2
numpy==2.1.1
opencv-python==4.11.0.86
packaging==24.2
pandas==2.2.3
pillow==11.2.1
psutil==7.0.0
py-cpuinfo==9.0.0
pyparsing==3.2.3
python-dateutil==2.9.0.post0
pytz==2025.2
PyYAML==6.0.2
requests==2.32.3
scipy==1.15.2
seaborn==0.13.2
setuptools==78.1.0
six==1.17.0
sympy==1.13.1
torch==2.6.0+cu124
torchaudio==2.6.0+cu124
torchvision==0.21.0+cu124
tqdm==4.67.1
typing_extensions==4.13.2
tzdata==2025.2
ultralytics==8.3.111
ultralytics-thop==2.0.14
urllib3==2.4.0

6
yolov8/yolov8.yaml Normal file
View File

@@ -0,0 +1,6 @@
train: /mnt/DATA/dataset/uav_dataset/train/images/
val: /mnt/DATA/dataset/uav_dataset/val/images/
test: /mnt/DATA/dataset/test2/images/
# number of classes
nc: 1
names: ['uav']

13
yolov8/yolov8_train.py Normal file
View File

@@ -0,0 +1,13 @@
from ultralytics import YOLO
# 加载预训练模型
model = YOLO('../yolov8n.pt')
# 开始训练
model.train(
data='./yolov8.yaml', # 数据配置文件路径
epochs=320, # 训练轮数
batch=-1, # 批量大小
imgsz=640, # 输入图片大小
device=0 # 使用的设备0 表示 GPU'cpu' 表示 CPU
)