Graduation-Project/image_fusion/Image_Registration_test.py

355 lines
14 KiB
Python
Raw Permalink Normal View History

2025-04-18 14:15:37 +00:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time
2025-04-19 10:59:35 +00:00
import argparse
2025-04-18 14:15:37 +00:00
import cv2
import numpy as np
2025-04-18 14:51:46 +00:00
from ultralytics import YOLO
2025-04-22 08:35:29 +00:00
from skimage.metrics import structural_similarity as ssim
2025-04-18 14:51:46 +00:00
# 添加YOLOv8模型初始化
2025-04-22 13:41:58 +00:00
yolo_model = YOLO("best.pt") # 可替换为yolov8s/m/l等
2025-04-19 05:08:15 +00:00
yolo_model.to('cuda') # 启用GPU加速
2025-04-18 14:51:46 +00:00
2025-04-18 14:15:37 +00:00
2025-04-22 08:35:29 +00:00
def calculate_en(img):
"""计算信息熵(处理灰度图)"""
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
hist = hist / hist.sum()
return -np.sum(hist * np.log2(hist + 1e-10))
def calculate_sf(img):
"""计算空间频率(处理灰度图)"""
rf = np.sqrt(np.mean(np.square(np.diff(img, axis=0))))
cf = np.sqrt(np.mean(np.square(np.diff(img, axis=1))))
return np.sqrt(rf ** 2 + cf ** 2)
def calculate_mi(img1, img2):
"""计算互信息(处理灰度图)"""
hist_2d = np.histogram2d(img1.ravel(), img2.ravel(), 256)[0]
pxy = hist_2d / hist_2d.sum()
px = np.sum(pxy, axis=1)
py = np.sum(pxy, axis=0)
return np.sum(pxy * np.log2(pxy / (px[:, None] * py[None, :] + 1e-10) + 1e-10))
def calculate_ssim(img1, img2):
"""计算SSIM处理灰度图"""
return ssim(img1, img2, data_range=255)
2025-04-18 14:15:37 +00:00
# 裁剪线性RGB对比度拉伸去掉2%百分位以下的数去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
"""
:param image:
:param truncated_value:
:param maxout:
:param min_out:
:return:
"""
def gray_process(gray, maxout=maxout, minout=min_out):
truncated_down = np.percentile(gray, truncated_value)
truncated_up = np.percentile(gray, 100 - truncated_value)
gray_new = ((maxout - minout) / (truncated_up - truncated_down)) * gray
gray_new[gray_new < minout] = minout
gray_new[gray_new > maxout] = maxout
return np.uint8(gray_new)
(b, g, r) = cv2.split(image)
b = gray_process(b)
g = gray_process(g)
r = gray_process(r)
result = cv2.merge((b, g, r)) # 合并每一个通道
return result
# RGB图片配准函数采用白天的可见光与红外灰度图计算两者Surf共同特征点之间的仿射矩阵。
def Images_matching(img_base, img_target):
"""
:param img_base:
:param img_target:匹配图像
:return: 返回仿射矩阵
"""
start = time.time()
orb = cv2.ORB_create()
2025-04-19 12:09:42 +00:00
# 对可见光图像进行对比度拉伸
# img_base = truncated_linear_stretch(img_base)
2025-04-18 14:15:37 +00:00
img_base = cv2.cvtColor(img_base, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT_create()
# 使用sift算子计算特征点和特征点周围的特征向量
st1 = time.time()
kp1, des1 = sift.detectAndCompute(img_base, None) # 1136 1136, 64
kp2, des2 = sift.detectAndCompute(img_target, None)
en1 = time.time()
2025-04-19 12:09:42 +00:00
2025-04-18 14:15:37 +00:00
# print(en1 - st1, "特征提取")
2025-04-19 12:09:42 +00:00
2025-04-18 14:15:37 +00:00
# 进行KNN特征匹配
# FLANN_INDEX_KDTREE = 0 # 建立FLANN匹配器的参数
# indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) # 配置索引密度树的数量为5
# searchParams = dict(checks=50) # 指定递归次数
# flann = cv2.FlannBasedMatcher(indexParams, searchParams) # 建立匹配器
# matches = flann.knnMatch(des1, des2, k=2) # 得出匹配的关键点 list: 1136
# FLANN_INDEX_KDTREE = 1
# index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
# search_params = dict(checks=50)
# flann = cv2.FlannBasedMatcher(index_params, search_params)
# matches = flann.knnMatch(des1, des2, k=2)
2025-04-19 12:09:42 +00:00
2025-04-18 14:15:37 +00:00
st2 = time.time()
matcher = cv2.BFMatcher()
matches = matcher.knnMatch(des1, des2, k=2)
de2 = time.time()
# print(de2 - st2, "特征匹配")
good = []
# 提取优秀的特征点
for m, n in matches:
if m.distance < 0.75 * n.distance: # 如果第一个邻近距离比第二个邻近距离的0.7倍小,则保留
good.append(m) # 134
src_pts = np.array([kp1[m.queryIdx].pt for m in good]) # 查询图像的特征描述子索引 # 134, 2
dst_pts = np.array([kp2[m.trainIdx].pt for m in good]) # 训练(模板)图像的特征描述子索引
if len(src_pts) <= 4:
2025-04-19 05:08:15 +00:00
print("Not enough matches are found - {}/{}".format(len(good), 4))
2025-04-18 14:15:37 +00:00
return 0, None, 0
else:
2025-04-19 10:59:35 +00:00
print(len(dst_pts), len(src_pts), "配准坐标点")
2025-04-18 14:15:37 +00:00
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
end = time.time()
times = end - start
# print("配准时间", times)
return 1, H[0], len(dst_pts)
def fusions(img_vl, img_inf):
"""
:param img_vl: 原图像
:param img_inf: 红外图像
:return:
"""
2025-04-18 14:51:46 +00:00
img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_BGR2YUV) # 如果输入是BGR需转换
# img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_RGB2YUV)
2025-04-18 14:15:37 +00:00
y, u, v = cv2.split(img_YUV) # 分离通道,获取Y通道
Yf = y * 0.5 + img_inf * 0.5
Yf = Yf.astype(np.uint8)
fusion = cv2.cvtColor(cv2.merge((Yf, u, v)), cv2.COLOR_YUV2RGB)
return fusion
def removeBlackBorder(gray):
"""
移除缝合后的图像的多余黑边
输入
image三维numpy矩阵待处理图像
输出
裁剪后的图像
"""
threshold = 40 # 阈值
nrow = gray.shape[0] # 获取图片尺寸
ncol = gray.shape[1]
rowc = gray[:, int(1 / 2 * nrow)] # 无法区分黑色区域超过一半的情况
colc = gray[int(1 / 2 * ncol), :]
rowflag = np.argwhere(rowc > threshold)
colflag = np.argwhere(colc > threshold)
left, bottom, right, top = rowflag[0, 0], colflag[-1, 0], rowflag[-1, 0], colflag[0, 0]
# cv2.imshow('name', gray[left:right, top:bottom]) # 效果展示
cv2.waitKey(1)
return gray[left:right, top:bottom], left, right, top, bottom
def main(matchimg_vi, matchimg_in):
"""
:param matchimg_vi: 可见光图像
:param matchimg_in: 红外图像
2025-04-18 14:51:46 +00:00
:return: 融合好的图像带检测结果
2025-04-18 14:15:37 +00:00
"""
2025-04-18 14:51:46 +00:00
try:
orimg_vi = matchimg_vi
orimg_in = matchimg_in
h, w = orimg_vi.shape[:2] # 480 640
2025-04-22 08:35:29 +00:00
# (3, 3)//获取对应的配准坐标点
flag, H, dot = Images_matching(matchimg_vi, matchimg_in)
2025-04-18 14:51:46 +00:00
if flag == 0:
2025-04-22 13:41:58 +00:00
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
2025-04-18 14:51:46 +00:00
else:
2025-04-22 08:35:29 +00:00
# 配准处理
2025-04-18 14:51:46 +00:00
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
2025-04-19 12:31:12 +00:00
matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
2025-04-22 08:35:29 +00:00
# 裁剪可见光图像
2025-04-18 14:51:46 +00:00
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
2025-04-22 13:41:58 +00:00
# 不裁剪可见光图像
fusion = fusions(orimg_vi, matched_ni)
2025-04-22 08:35:29 +00:00
# 转换为灰度计算指标
fusion_gray = cv2.cvtColor(fusion, cv2.COLOR_RGB2GRAY)
2025-04-22 13:41:58 +00:00
cropped_vi_gray = cv2.cvtColor(orimg_vi, cv2.COLOR_BGR2GRAY)
2025-04-22 08:35:29 +00:00
matched_ni_gray = matched_ni # 红外图已经是灰度
# 计算指标
en = calculate_en(fusion_gray)
sf = calculate_sf(fusion_gray)
mi_visible = calculate_mi(fusion_gray, cropped_vi_gray)
mi_infrared = calculate_mi(fusion_gray, matched_ni_gray)
mi_total = mi_visible + mi_infrared
2025-04-22 13:41:58 +00:00
# 添加SSIM容错处理
try:
ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
ssim_avg = (ssim_visible + ssim_infrared) / 2
except Exception as ssim_error:
print(f"SSIM计算错误: {ssim_error}")
ssim_avg = -1 # 用-1表示计算失败
2025-04-18 14:51:46 +00:00
# YOLOv8目标检测
results = yolo_model(fusion) # 输入融合后的图像
annotated_image = results[0].plot() # 绘制检测框
2025-04-22 08:35:29 +00:00
# 返回带检测结果的图像
return 1, annotated_image, dot, en, sf, mi_total, ssim_avg
2025-04-18 14:51:46 +00:00
except Exception as e:
print(f"Error in fusion/detection: {e}")
2025-04-22 13:41:58 +00:00
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
2025-04-18 14:15:37 +00:00
2025-04-19 10:58:44 +00:00
def parse_args():
# 输入可见光和红外图像路径
2025-04-22 13:41:58 +00:00
visible_image_path = "./test/visible/visibleI0195.jpg" # 可见光图片路径
infrared_image_path = "./test/infrared/infraredI0195.jpg" # 红外图片路径
2025-04-19 10:58:44 +00:00
# 输入可见光和红外视频路径
2025-04-22 13:41:58 +00:00
visible_video_path = "./test/visible.mp4" # 可见光视频路径
infrared_video_path = "./test/infrared.mp4" # 红外视频路径
2025-04-19 10:58:44 +00:00
"""解析命令行参数"""
parser = argparse.ArgumentParser(description='图像融合与目标检测')
parser.add_argument('--mode', type=str, choices=['video', 'image'], default='image',
help='输入模式video视频流 或 image静态图片')
# 区分摄像头或视频文件
parser.add_argument('--source', type=str, choices=['camera', 'file'],
help='视频输入类型camera摄像头或 file视频文件')
# 视频模式参数
parser.add_argument('--video1', type=str, default=visible_video_path,
help='可见光视频路径仅在source=file时需要')
parser.add_argument('--video2', type=str, default=infrared_video_path,
help='红外视频路径仅在source=file时需要')
# 摄像头模式参数
parser.add_argument('--camera_id1', type=int, default=0,
help='可见光摄像头ID仅在source=camera时需要默认0')
parser.add_argument('--camera_id2', type=int, default=1,
help='红外摄像头ID仅在source=camera时需要默认1')
parser.add_argument('--output', type=str, default='output.mp4',
help='输出视频路径仅在video模式需要')
# 图片模式参数
parser.add_argument('--visible', type=str, default=visible_image_path,
help='可见光图片路径仅在image模式需要')
parser.add_argument('--infrared', type=str, default=infrared_image_path,
help='红外图片路径仅在image模式需要')
return parser.parse_args()
2025-04-18 14:15:37 +00:00
if __name__ == '__main__':
time_all = 0
dots = 0
i = 0
2025-04-19 10:59:35 +00:00
args = parse_args()
2025-04-19 05:08:15 +00:00
2025-04-19 10:59:35 +00:00
if args.mode == 'video':
if args.source == 'file':
# ========== 视频流处理模式 ==========
if not args.video1 or not args.video2:
raise ValueError("视频模式需要指定 --video1 和 --video2 参数")
capture = cv2.VideoCapture(args.video2)
capture2 = cv2.VideoCapture(args.video1)
elif args.source == 'camera':
# ========== 摄像头处理模式 ==========
capture = cv2.VideoCapture(args.camera_id1)
capture2 = cv2.VideoCapture(args.camera_id2)
else:
raise ValueError("必须指定 --source 参数camera 或 file")
# 公共视频处理逻辑
fps = capture.get(cv2.CAP_PROP_FPS) if args.source == 'file' else 30
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(args.output, fourcc, fps, (640, 480))
while True:
ret1, frame_vi = capture.read() # 可见光帧
ret2, frame_ir = capture2.read() # 红外帧
if not ret1 or not ret2:
break
# 红外图像转灰度
frame_ir_gray = cv2.cvtColor(frame_ir, cv2.COLOR_BGR2GRAY)
# 执行融合与检测
flag, fusion, _ = main(frame_vi, frame_ir_gray)
if flag == 1:
cv2.imshow("Fusion with YOLOv8 Detection", fusion)
out.write(fusion)
if cv2.waitKey(1) == ord('q'):
break
# 释放资源
capture.release()
capture2.release()
out.release()
2025-04-19 05:08:15 +00:00
cv2.destroyAllWindows()
2025-04-19 10:59:35 +00:00
elif args.mode == 'image':
# ========= 图片处理模式 ==========
if not args.infrared or not args.visible:
raise ValueError("图片模式需要指定 --visible 和 --infrared 参数")
# 读取图像
img_visible = cv2.imread(args.visible)
img_infrared = cv2.imread(args.infrared)
if img_visible is None or img_infrared is None:
print("Error: 图片加载失败,请检查路径!")
exit()
# 转换为灰度图(红外图像处理)
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
# 执行融合与检测
2025-04-22 08:35:29 +00:00
flag, fusion_result, dot, en, sf, mi, ssim_val = main(img_visible, img_inf_gray)
2025-04-19 10:59:35 +00:00
if flag == 1:
2025-04-22 08:35:29 +00:00
# 展示评价指标
print("\n======== 融合质量评价 ========")
print(f"信息熵EN: {en:.2f}")
print(f"空间频率SF: {sf:.2f}")
print(f"互信息MI: {mi:.2f}")
2025-04-22 13:41:58 +00:00
# 条件显示SSIM
if ssim_val >= 0:
print(f"结构相似性SSIM: {ssim_val:.4f}")
else:
print("结构相似性SSIM: 计算失败(已跳过)")
print(f"配准点数: {dot}")
2025-04-19 10:59:35 +00:00
# 显示并保存结果
2025-04-22 13:41:58 +00:00
# cv2.imshow("Fusion with Detection", fusion_result)
2025-04-20 07:19:55 +00:00
cv2.imwrite("output/fusion_result.jpg", fusion_result)
2025-04-22 13:41:58 +00:00
# cv2.waitKey(0)
# cv2.destroyAllWindows()
2025-04-19 10:59:35 +00:00
else:
print("融合失败!")