Compare commits
45 Commits
f4b558fa60
...
main
Author | SHA1 | Date | |
---|---|---|---|
2e7cf69512 | |||
76240a12e6 | |||
98321aa7d5 | |||
d39aa31651 | |||
f127ae2852 | |||
3a65d89315 | |||
2a3e5b17e7 | |||
c57c8f3552 | |||
310131d876 | |||
ba4508507b | |||
89d8f4c0df | |||
d1ed958db5 | |||
abd033b831 | |||
69482e6a3f | |||
9f827af58e | |||
338a5e07e8 | |||
9d99b00e55 | |||
dd0e0d869c | |||
8cd6df4527 | |||
132ed64136 | |||
be1e3627e7 | |||
d139f5afcf | |||
428790ab91 | |||
65e10f3e7d | |||
960b66a692 | |||
ef3d521e4a | |||
3b80f237fa | |||
f320e79702 | |||
34a5247dd2 | |||
1930e1b96b | |||
5095dbe6c0 | |||
554c7e6083 | |||
0d84bba234 | |||
c81de41b3e | |||
b8ffb902b3 | |||
da36a8fc09 | |||
45db741f35 | |||
5df0e15baf | |||
5e72ac28cc | |||
5b61b48d50 | |||
160bb2e365 | |||
65ee0565c2 | |||
ca275ba74b | |||
1cfc280f34 | |||
f5e527e02e |
10
.gitignore
vendored
@@ -178,7 +178,7 @@ cython_debug/
|
||||
# ---> JetBrains
|
||||
# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio, WebStorm and Rider
|
||||
# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
|
||||
|
||||
.idea/
|
||||
# User-specific stuff
|
||||
.idea/**/workspace.xml
|
||||
.idea/**/tasks.xml
|
||||
@@ -277,6 +277,7 @@ fabric.properties
|
||||
# Icon must end with two \r
|
||||
Icon
|
||||
|
||||
|
||||
# Thumbnails
|
||||
._*
|
||||
|
||||
@@ -296,3 +297,10 @@ Network Trash Folder
|
||||
Temporary Items
|
||||
.apdisk
|
||||
|
||||
# project files
|
||||
/whl_packages/
|
||||
runs/
|
||||
*.pt
|
||||
*.cache
|
||||
.vscode/
|
||||
*.json
|
||||
|
32
README.md
@@ -1,3 +1,35 @@
|
||||
# Graduation-Project
|
||||
|
||||
毕业设计:基于YOLO和图像融合技术的无人机检测系统及安全性研究
|
||||
|
||||
Linux 运行联邦训练
|
||||
```bash
|
||||
cd federated_learning
|
||||
```
|
||||
|
||||
```bash
|
||||
nohup python -u yolov8_fed.py > runtime.log 2>&1 &
|
||||
```
|
||||
|
||||
Linux 运行集中训练
|
||||
```bash
|
||||
cd yolov8
|
||||
```
|
||||
|
||||
```bash
|
||||
nohup python -u yolov8_train.py > runtime.log 2>&1 &
|
||||
```
|
||||
|
||||
实时监控日志文件
|
||||
```bash
|
||||
tail -f runtime.log
|
||||
```
|
||||
|
||||
运行图像融合配准代码
|
||||
```bash
|
||||
cd image_fusion
|
||||
```
|
||||
|
||||
```bash
|
||||
python Image_Registration_test.py
|
||||
```
|
BIN
dataset/train1/images/6.jpg
Normal file
After Width: | Height: | Size: 145 KiB |
BIN
dataset/train1/images/7.jpg
Normal file
After Width: | Height: | Size: 97 KiB |
2
dataset/train1/labels/6.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
0 0.5375 0.37395833333333334 0.253125 0.16458333333333333
|
||||
0 0.2890625 0.5833333333333334 0.196875 0.1125
|
1
dataset/train1/labels/7.txt
Normal file
@@ -0,0 +1 @@
|
||||
0 0.36328125 0.525 0.7109375 0.8083333333333333
|
4
dataset/train1/train1.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
train: ./images
|
||||
val: ../val
|
||||
nc: 1
|
||||
names: ['uav']
|
BIN
dataset/train2/images/000007.JPG
Normal file
After Width: | Height: | Size: 136 KiB |
BIN
dataset/train2/images/02.jpg
Normal file
After Width: | Height: | Size: 1.5 MiB |
1
dataset/train2/labels/000007.txt
Normal file
@@ -0,0 +1 @@
|
||||
0 0.6934895833333333 0.6527777777777778 0.008854166666666666 0.018518518518518517
|
1
dataset/train2/labels/02.txt
Normal file
@@ -0,0 +1 @@
|
||||
0 0.423698 0.593519 0.061979 0.029630
|
4
dataset/train2/train2.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
train: ./images
|
||||
val: ../val
|
||||
nc: 1
|
||||
names: ['uav']
|
BIN
dataset/val/images/VS_P65.jpg
Normal file
After Width: | Height: | Size: 77 KiB |
BIN
dataset/val/images/VS_P66.jpg
Normal file
After Width: | Height: | Size: 74 KiB |
1
dataset/val/labels/VS_P65.txt
Normal file
@@ -0,0 +1 @@
|
||||
0 0.5109375 0.5322916666666667 0.125 0.13958333333333334
|
1
dataset/val/labels/VS_P66.txt
Normal file
@@ -0,0 +1 @@
|
||||
0 0.55078125 0.296875 0.0890625 0.08958333333333333
|
16
federated_learning/GenerateTestdata.sh
Normal file
@@ -0,0 +1,16 @@
|
||||
# 创建测试目录结构
|
||||
mkdir -p ./test_data/{client1,client2}/{train,val}/images
|
||||
mkdir -p ./test_data/{client1,client2}/{train,val}/labels
|
||||
|
||||
# 生成虚拟数据(各客户端仅需2张图片)
|
||||
for client in client1 client2; do
|
||||
for split in train val; do
|
||||
# 创建空图片(128x128 RGB)
|
||||
magick -size 128x128 xc:white test_data/${client}/${split}/images/img1.jpg
|
||||
magick -size 128x128 xc:black test_data/${client}/${split}/images/img2.jpg
|
||||
|
||||
# 创建示例标签文件
|
||||
echo "0 0.5 0.5 0.2 0.2" > test_data/${client}/${split}/labels/img1.txt
|
||||
echo "1 0.3 0.3 0.4 0.4" > test_data/${client}/${split}/labels/img2.txt
|
||||
done
|
||||
done
|
0
federated_learning/__init__.py
Normal file
4
federated_learning/config/client1_data.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
train: ../test_data/client1/train/images
|
||||
val: ../test_data/client1/val/images
|
||||
nc: 2
|
||||
names: [ 'class0', 'class1' ]
|
4
federated_learning/config/client2_data.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
train: ../test_data/client2/train/images
|
||||
val: ../test_data/client2/val/images
|
||||
nc: 2
|
||||
names: [ 'class0', 'class1' ]
|
BIN
federated_learning/yolo11n.pt
Normal file
49
federated_learning/yolov8.yaml
Normal file
@@ -0,0 +1,49 @@
|
||||
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
|
||||
|
||||
# Ultralytics YOLOv8 object detection model with P3/8 - P5/32 outputs
|
||||
# Model docs: https://docs.ultralytics.com/models/yolov8
|
||||
# Task docs: https://docs.ultralytics.com/tasks/detect
|
||||
|
||||
# Parameters
|
||||
nc: 1 # number of classes
|
||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||
# [depth, width, max_channels]
|
||||
n: [0.33, 0.25, 1024] # YOLOv8n summary: 129 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPS
|
||||
s: [0.33, 0.50, 1024] # YOLOv8s summary: 129 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPS
|
||||
m: [0.67, 0.75, 768] # YOLOv8m summary: 169 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPS
|
||||
l: [1.00, 1.00, 512] # YOLOv8l summary: 209 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPS
|
||||
x: [1.00, 1.25, 512] # YOLOv8x summary: 209 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPS
|
||||
|
||||
# YOLOv8.0n backbone
|
||||
backbone:
|
||||
# [from, repeats, module, args]
|
||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||
- [-1, 3, C2f, [128, True]]
|
||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||
- [-1, 6, C2f, [256, True]]
|
||||
- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
|
||||
- [-1, 6, C2f, [512, True]]
|
||||
- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
|
||||
- [-1, 3, C2f, [1024, True]]
|
||||
- [-1, 1, SPPF, [1024, 5]] # 9
|
||||
|
||||
# YOLOv8.0n head
|
||||
head:
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 6], 1, Concat, [1]] # cat backbone P4
|
||||
- [-1, 3, C2f, [512]] # 12
|
||||
|
||||
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
||||
- [[-1, 4], 1, Concat, [1]] # cat backbone P3
|
||||
- [-1, 3, C2f, [256]] # 15 (P3/8-small)
|
||||
|
||||
- [-1, 1, Conv, [256, 3, 2]]
|
||||
- [[-1, 12], 1, Concat, [1]] # cat head P4
|
||||
- [-1, 3, C2f, [512]] # 18 (P4/16-medium)
|
||||
|
||||
- [-1, 1, Conv, [512, 3, 2]]
|
||||
- [[-1, 9], 1, Concat, [1]] # cat head P5
|
||||
- [-1, 3, C2f, [1024]] # 21 (P5/32-large)
|
||||
|
||||
- [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)
|
252
federated_learning/yolov8_fed.py
Normal file
@@ -0,0 +1,252 @@
|
||||
import glob
|
||||
import os
|
||||
from pathlib import Path
|
||||
import json
|
||||
from pydoc import cli
|
||||
from threading import local
|
||||
|
||||
import yaml
|
||||
from ultralytics import YOLO
|
||||
import copy
|
||||
import torch
|
||||
|
||||
|
||||
# ------------ 新增联邦学习工具函数 ------------
|
||||
def federated_avg(global_model, client_weights):
|
||||
"""联邦平均核心算法"""
|
||||
# 计算总样本数
|
||||
total_samples = sum(n for _, n in client_weights)
|
||||
if total_samples == 0:
|
||||
raise ValueError("Total number of samples must be positive.")
|
||||
|
||||
# DEBUG: global_dict
|
||||
# print(global_model)
|
||||
|
||||
# 获取YOLO底层PyTorch模型参数
|
||||
global_dict = global_model.model.state_dict()
|
||||
# 提取所有客户端的 state_dict 和对应样本数
|
||||
state_dicts, sample_counts = zip(*client_weights)
|
||||
|
||||
# 克隆参数并脱离计算图
|
||||
global_dict_copy = {
|
||||
k: v.clone().detach().requires_grad_(False) for k, v in global_dict.items()
|
||||
}
|
||||
|
||||
# 聚合可训练且存在的参数
|
||||
for key in global_dict_copy:
|
||||
# if global_dict_copy[key].dtype != torch.float32:
|
||||
# continue
|
||||
# if any(
|
||||
# x in key for x in ["running_mean", "running_var", "num_batches_tracked"]
|
||||
# ):
|
||||
# continue
|
||||
# 检查所有客户端是否包含当前键
|
||||
all_clients_have_key = all(key in sd for sd in state_dicts)
|
||||
if all_clients_have_key:
|
||||
# 计算每个客户端的加权张量
|
||||
# weighted_tensors = [
|
||||
# client_state[key].float() * (sample_count / total_samples)
|
||||
# for client_state, sample_count in zip(state_dicts, sample_counts)
|
||||
# ]
|
||||
weighted_tensors = []
|
||||
for client_state, sample_count in zip(state_dicts, sample_counts):
|
||||
weight = sample_count / total_samples # 计算权重
|
||||
weighted_tensor = client_state[key].float() * weight # 加权张量
|
||||
weighted_tensors.append(weighted_tensor)
|
||||
# 聚合加权张量并更新全局参数
|
||||
global_dict_copy[key] = torch.stack(weighted_tensors, dim=0).sum(dim=0)
|
||||
|
||||
# else:
|
||||
# print(f"错误: 键 {key} 在部分客户端缺失,已保留全局参数")
|
||||
# 终止训练或记录日志
|
||||
# raise KeyError(f"键 {key} 缺失")
|
||||
|
||||
# 加载回YOLO模型
|
||||
global_model.model.load_state_dict(global_dict_copy, strict=True)
|
||||
|
||||
# global_model.model.train()
|
||||
# with torch.no_grad():
|
||||
# global_model.model.load_state_dict(global_dict_copy, strict=True)
|
||||
|
||||
# 定义多个关键层
|
||||
MONITOR_KEYS = [
|
||||
"model.0.conv.weight",
|
||||
"model.1.conv.weight",
|
||||
"model.3.conv.weight",
|
||||
"model.5.conv.weight",
|
||||
"model.7.conv.weight",
|
||||
"model.9.cv1.conv.weight",
|
||||
"model.12.cv1.conv.weight",
|
||||
"model.15.cv1.conv.weight",
|
||||
"model.18.cv1.conv.weight",
|
||||
"model.21.cv1.conv.weight",
|
||||
"model.22.dfl.conv.weight",
|
||||
]
|
||||
|
||||
with open("aggregation_check.txt", "a") as f:
|
||||
f.write("\n=== 参数聚合检查 ===\n")
|
||||
for key in MONITOR_KEYS:
|
||||
# if key not in global_dict:
|
||||
# continue
|
||||
# if not all(key in sd for sd in state_dicts):
|
||||
# continue
|
||||
|
||||
# 计算聚合后均值
|
||||
aggregated_mean = global_dict[key].mean().item()
|
||||
|
||||
# 计算各客户端均值
|
||||
client_means = [sd[key].float().mean().item() for sd in state_dicts]
|
||||
with open("aggregation_check.txt", "a") as f:
|
||||
f.write(f"层 '{key}' 聚合后均值: {aggregated_mean:.6f}\n")
|
||||
f.write(f"各客户端该层均值差异: {[f'{cm:.6f}' for cm in client_means]}\n")
|
||||
f.write(f"客户端最大差异: {max(client_means) - min(client_means):.6f}\n\n")
|
||||
|
||||
return global_model
|
||||
|
||||
|
||||
# ------------ 修改训练流程 ------------
|
||||
def federated_train(num_rounds, clients_data):
|
||||
# ========== 初始化指标记录 ==========
|
||||
metrics = {
|
||||
"round": [],
|
||||
"val_mAP": [], # 每轮验证集mAP
|
||||
# "train_loss": [], # 每轮平均训练损失
|
||||
"client_mAPs": [], # 各客户端本地模型在验证集上的mAP
|
||||
"communication_cost": [], # 每轮通信开销(MB)
|
||||
}
|
||||
# 初始化全局模型
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
global_model = (
|
||||
YOLO("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.yaml")
|
||||
.load("/home/image1325/DATA/Graduation-Project/federated_learning/yolov8n.pt")
|
||||
.to(device)
|
||||
)
|
||||
global_model.model.model[-1].nc = 1 # 设置检测类别数为1
|
||||
# global_model.model.train.ema.enabled = False
|
||||
|
||||
# 克隆全局模型
|
||||
local_model = copy.deepcopy(global_model)
|
||||
|
||||
for _ in range(num_rounds):
|
||||
client_weights = []
|
||||
# 各客户端的训练损失
|
||||
# client_losses = []
|
||||
|
||||
# DEBUG: 检查全局模型参数
|
||||
# global_dict = global_model.model.state_dict()
|
||||
# print(global_dict.keys())
|
||||
|
||||
# 每个客户端本地训练
|
||||
for data_path in clients_data:
|
||||
# 统计本地训练样本数
|
||||
with open(data_path, "r") as f:
|
||||
config = yaml.safe_load(f)
|
||||
# Resolve img_dir relative to the YAML file's location
|
||||
yaml_dir = os.path.dirname(data_path)
|
||||
img_dir = os.path.join(
|
||||
yaml_dir, config.get("train", data_path)
|
||||
) # 从配置文件中获取图像目录
|
||||
|
||||
# print(f"Image directory: {img_dir}")
|
||||
num_samples = (
|
||||
len(glob.glob(os.path.join(img_dir, "*.jpg")))
|
||||
+ len(glob.glob(os.path.join(img_dir, "*.png")))
|
||||
+ len(glob.glob(os.path.join(img_dir, "*.jpeg")))
|
||||
)
|
||||
# print(f"Number of images: {num_samples}")
|
||||
|
||||
local_model.model.load_state_dict(
|
||||
global_model.model.state_dict(), strict=True
|
||||
)
|
||||
|
||||
# 本地训练(保持你的原有参数设置)
|
||||
local_model.train(
|
||||
name=f"train{_ + 1}", # 当前轮次
|
||||
data=data_path,
|
||||
# model=local_model,
|
||||
epochs=16, # 每轮本地训练多少个epoch
|
||||
# save_period=16,
|
||||
imgsz=768, # 图像大小
|
||||
verbose=False, # 关闭冗余输出
|
||||
batch=-1, # 批大小
|
||||
workers=6, # 工作线程数
|
||||
)
|
||||
|
||||
# 记录客户端训练损失
|
||||
# client_loss = results.results_dict['train_loss']
|
||||
# client_losses.append(client_loss)
|
||||
|
||||
# 收集模型参数及样本数
|
||||
client_weights.append((local_model.model.state_dict(), num_samples))
|
||||
|
||||
# 聚合参数更新全局模型
|
||||
global_model = federated_avg(global_model, client_weights)
|
||||
|
||||
# DEBUG: 检查全局模型参数
|
||||
# keys = global_model.model.state_dict().keys()
|
||||
|
||||
# ========== 评估全局模型 ==========
|
||||
# 复制全局模型以避免在评估时修改参数
|
||||
val_model = copy.deepcopy(global_model)
|
||||
# 评估全局模型在验证集上的性能
|
||||
with torch.no_grad():
|
||||
val_results = val_model.val(
|
||||
data="/mnt/DATA/uav_dataset_old/UAVdataset/fed_data.yaml", # 指定验证集配置文件
|
||||
imgsz=768, # 图像大小
|
||||
batch=16, # 批大小
|
||||
verbose=False, # 关闭冗余输出
|
||||
)
|
||||
# 丢弃评估模型
|
||||
del val_model
|
||||
|
||||
# DEBUG: 检查全局模型参数
|
||||
# if keys != global_model.model.state_dict().keys():
|
||||
# print("模型参数不一致!")
|
||||
|
||||
val_mAP = val_results.box.map # 获取mAP@0.5
|
||||
|
||||
# 计算平均训练损失
|
||||
# avg_train_loss = sum(client_losses) / len(client_losses)
|
||||
|
||||
# 计算通信开销(假设传输全部模型参数)
|
||||
model_size = sum(p.numel() * 4 for p in global_model.model.parameters()) / (
|
||||
1024**2
|
||||
) # MB
|
||||
|
||||
# 记录到指标容器
|
||||
metrics["round"].append(_ + 1)
|
||||
metrics["val_mAP"].append(val_mAP)
|
||||
# metrics['train_loss'].append(avg_train_loss)
|
||||
metrics["communication_cost"].append(model_size)
|
||||
# 打印当前轮次结果
|
||||
with open("aggregation_check.txt", "a") as f:
|
||||
f.write(f"\n[Round {_ + 1}/{num_rounds}]\n")
|
||||
f.write(f"Validation mAP@0.5: {val_mAP:.4f}\n")
|
||||
# f.write(f"Average Train Loss: {avg_train_loss:.4f}")
|
||||
f.write(f"Communication Cost: {model_size:.2f} MB\n\n")
|
||||
|
||||
return global_model, metrics
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 联邦训练配置
|
||||
clients_config = [
|
||||
"/mnt/DATA/uav_fed/train1/train1.yaml", # 客户端1数据路径
|
||||
"/mnt/DATA/uav_fed/train2/train2.yaml", # 客户端2数据路径
|
||||
]
|
||||
|
||||
# 使用本地数据集进行测试
|
||||
# clients_config = [
|
||||
# "/home/image1325/DATA/Graduation-Project/dataset/train1/train1.yaml",
|
||||
# "/home/image1325/DATA/Graduation-Project/dataset/train2/train2.yaml",
|
||||
# ]
|
||||
|
||||
# 运行联邦训练
|
||||
final_model, metrics = federated_train(num_rounds=10, clients_data=clients_config)
|
||||
|
||||
# 保存最终模型
|
||||
final_model.save("yolov8n_federated.pt")
|
||||
# final_model.export(format="onnx") # 导出为ONNX格式
|
||||
|
||||
with open("metrics.json", "w") as f:
|
||||
json.dump(metrics, f, indent=4)
|
354
image_fusion/Image_Registration_test.py
Normal file
@@ -0,0 +1,354 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import time
|
||||
import argparse
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ultralytics import YOLO
|
||||
from skimage.metrics import structural_similarity as ssim
|
||||
|
||||
# 添加YOLOv8模型初始化
|
||||
yolo_model = YOLO("best.pt") # 可替换为yolov8s/m/l等
|
||||
yolo_model.to('cuda') # 启用GPU加速
|
||||
|
||||
|
||||
def calculate_en(img):
|
||||
"""计算信息熵(处理灰度图)"""
|
||||
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
|
||||
hist = hist / hist.sum()
|
||||
return -np.sum(hist * np.log2(hist + 1e-10))
|
||||
|
||||
|
||||
def calculate_sf(img):
|
||||
"""计算空间频率(处理灰度图)"""
|
||||
rf = np.sqrt(np.mean(np.square(np.diff(img, axis=0))))
|
||||
cf = np.sqrt(np.mean(np.square(np.diff(img, axis=1))))
|
||||
return np.sqrt(rf ** 2 + cf ** 2)
|
||||
|
||||
|
||||
def calculate_mi(img1, img2):
|
||||
"""计算互信息(处理灰度图)"""
|
||||
hist_2d = np.histogram2d(img1.ravel(), img2.ravel(), 256)[0]
|
||||
pxy = hist_2d / hist_2d.sum()
|
||||
px = np.sum(pxy, axis=1)
|
||||
py = np.sum(pxy, axis=0)
|
||||
return np.sum(pxy * np.log2(pxy / (px[:, None] * py[None, :] + 1e-10) + 1e-10))
|
||||
|
||||
|
||||
def calculate_ssim(img1, img2):
|
||||
"""计算SSIM(处理灰度图)"""
|
||||
return ssim(img1, img2, data_range=255)
|
||||
|
||||
|
||||
# 裁剪线性RGB对比度拉伸:(去掉2%百分位以下的数,去掉98%百分位以上的数,上下百分位数一般相同,并设置输出上下限)
|
||||
def truncated_linear_stretch(image, truncated_value=2, maxout=255, min_out=0):
|
||||
"""
|
||||
:param image:
|
||||
:param truncated_value:
|
||||
:param maxout:
|
||||
:param min_out:
|
||||
:return:
|
||||
"""
|
||||
|
||||
def gray_process(gray, maxout=maxout, minout=min_out):
|
||||
truncated_down = np.percentile(gray, truncated_value)
|
||||
truncated_up = np.percentile(gray, 100 - truncated_value)
|
||||
gray_new = ((maxout - minout) / (truncated_up - truncated_down)) * gray
|
||||
gray_new[gray_new < minout] = minout
|
||||
gray_new[gray_new > maxout] = maxout
|
||||
return np.uint8(gray_new)
|
||||
|
||||
(b, g, r) = cv2.split(image)
|
||||
b = gray_process(b)
|
||||
g = gray_process(g)
|
||||
r = gray_process(r)
|
||||
result = cv2.merge((b, g, r)) # 合并每一个通道
|
||||
return result
|
||||
|
||||
|
||||
# RGB图片配准函数,采用白天的可见光与红外灰度图,计算两者Surf共同特征点,之间的仿射矩阵。
|
||||
def Images_matching(img_base, img_target):
|
||||
"""
|
||||
:param img_base:
|
||||
:param img_target:匹配图像
|
||||
:return: 返回仿射矩阵
|
||||
"""
|
||||
start = time.time()
|
||||
orb = cv2.ORB_create()
|
||||
|
||||
# 对可见光图像进行对比度拉伸
|
||||
# img_base = truncated_linear_stretch(img_base)
|
||||
|
||||
img_base = cv2.cvtColor(img_base, cv2.COLOR_BGR2GRAY)
|
||||
sift = cv2.SIFT_create()
|
||||
# 使用sift算子计算特征点和特征点周围的特征向量
|
||||
st1 = time.time()
|
||||
kp1, des1 = sift.detectAndCompute(img_base, None) # 1136 1136, 64
|
||||
kp2, des2 = sift.detectAndCompute(img_target, None)
|
||||
en1 = time.time()
|
||||
|
||||
# print(en1 - st1, "特征提取")
|
||||
|
||||
# 进行KNN特征匹配
|
||||
# FLANN_INDEX_KDTREE = 0 # 建立FLANN匹配器的参数
|
||||
# indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) # 配置索引,密度树的数量为5
|
||||
# searchParams = dict(checks=50) # 指定递归次数
|
||||
# flann = cv2.FlannBasedMatcher(indexParams, searchParams) # 建立匹配器
|
||||
# matches = flann.knnMatch(des1, des2, k=2) # 得出匹配的关键点 list: 1136
|
||||
# FLANN_INDEX_KDTREE = 1
|
||||
# index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
|
||||
# search_params = dict(checks=50)
|
||||
# flann = cv2.FlannBasedMatcher(index_params, search_params)
|
||||
# matches = flann.knnMatch(des1, des2, k=2)
|
||||
|
||||
st2 = time.time()
|
||||
matcher = cv2.BFMatcher()
|
||||
matches = matcher.knnMatch(des1, des2, k=2)
|
||||
de2 = time.time()
|
||||
# print(de2 - st2, "特征匹配")
|
||||
good = []
|
||||
# 提取优秀的特征点
|
||||
for m, n in matches:
|
||||
if m.distance < 0.75 * n.distance: # 如果第一个邻近距离比第二个邻近距离的0.7倍小,则保留
|
||||
good.append(m) # 134
|
||||
src_pts = np.array([kp1[m.queryIdx].pt for m in good]) # 查询图像的特征描述子索引 # 134, 2
|
||||
dst_pts = np.array([kp2[m.trainIdx].pt for m in good]) # 训练(模板)图像的特征描述子索引
|
||||
if len(src_pts) <= 4:
|
||||
print("Not enough matches are found - {}/{}".format(len(good), 4))
|
||||
return 0, None, 0
|
||||
else:
|
||||
print(len(dst_pts), len(src_pts), "配准坐标点")
|
||||
H = cv2.findHomography(dst_pts, src_pts, cv2.RANSAC, 4) # 生成变换矩阵 H[0]: 3, 3 H[1]: 134, 1
|
||||
end = time.time()
|
||||
times = end - start
|
||||
# print("配准时间", times)
|
||||
return 1, H[0], len(dst_pts)
|
||||
|
||||
|
||||
def fusions(img_vl, img_inf):
|
||||
"""
|
||||
:param img_vl: 原图像
|
||||
:param img_inf: 红外图像
|
||||
:return:
|
||||
"""
|
||||
img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_BGR2YUV) # 如果输入是BGR,需转换
|
||||
# img_YUV = cv2.cvtColor(img_vl, cv2.COLOR_RGB2YUV)
|
||||
y, u, v = cv2.split(img_YUV) # 分离通道,获取Y通道
|
||||
Yf = y * 0.5 + img_inf * 0.5
|
||||
Yf = Yf.astype(np.uint8)
|
||||
fusion = cv2.cvtColor(cv2.merge((Yf, u, v)), cv2.COLOR_YUV2RGB)
|
||||
return fusion
|
||||
|
||||
|
||||
def removeBlackBorder(gray):
|
||||
"""
|
||||
移除缝合后的图像的多余黑边
|
||||
输入:
|
||||
image:三维numpy矩阵,待处理图像
|
||||
输出:
|
||||
裁剪后的图像
|
||||
"""
|
||||
threshold = 40 # 阈值
|
||||
nrow = gray.shape[0] # 获取图片尺寸
|
||||
ncol = gray.shape[1]
|
||||
rowc = gray[:, int(1 / 2 * nrow)] # 无法区分黑色区域超过一半的情况
|
||||
colc = gray[int(1 / 2 * ncol), :]
|
||||
rowflag = np.argwhere(rowc > threshold)
|
||||
colflag = np.argwhere(colc > threshold)
|
||||
left, bottom, right, top = rowflag[0, 0], colflag[-1, 0], rowflag[-1, 0], colflag[0, 0]
|
||||
# cv2.imshow('name', gray[left:right, top:bottom]) # 效果展示
|
||||
cv2.waitKey(1)
|
||||
return gray[left:right, top:bottom], left, right, top, bottom
|
||||
|
||||
|
||||
def main(matchimg_vi, matchimg_in):
|
||||
"""
|
||||
:param matchimg_vi: 可见光图像
|
||||
:param matchimg_in: 红外图像
|
||||
:return: 融合好的图像(带检测结果)
|
||||
"""
|
||||
try:
|
||||
orimg_vi = matchimg_vi
|
||||
orimg_in = matchimg_in
|
||||
h, w = orimg_vi.shape[:2] # 480 640
|
||||
# (3, 3)//获取对应的配准坐标点
|
||||
flag, H, dot = Images_matching(matchimg_vi, matchimg_in)
|
||||
if flag == 0:
|
||||
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
|
||||
else:
|
||||
# 配准处理
|
||||
matched_ni = cv2.warpPerspective(orimg_in, H, (w, h))
|
||||
matched_ni, left, right, top, bottom = removeBlackBorder(matched_ni)
|
||||
|
||||
# 裁剪可见光图像
|
||||
# fusion = fusions(orimg_vi[left:right, top:bottom], matched_ni)
|
||||
|
||||
# 不裁剪可见光图像
|
||||
fusion = fusions(orimg_vi, matched_ni)
|
||||
|
||||
# 转换为灰度计算指标
|
||||
fusion_gray = cv2.cvtColor(fusion, cv2.COLOR_RGB2GRAY)
|
||||
cropped_vi_gray = cv2.cvtColor(orimg_vi, cv2.COLOR_BGR2GRAY)
|
||||
matched_ni_gray = matched_ni # 红外图已经是灰度
|
||||
|
||||
# 计算指标
|
||||
en = calculate_en(fusion_gray)
|
||||
sf = calculate_sf(fusion_gray)
|
||||
mi_visible = calculate_mi(fusion_gray, cropped_vi_gray)
|
||||
mi_infrared = calculate_mi(fusion_gray, matched_ni_gray)
|
||||
mi_total = mi_visible + mi_infrared
|
||||
|
||||
# 添加SSIM容错处理
|
||||
try:
|
||||
ssim_visible = calculate_ssim(fusion_gray, cropped_vi_gray)
|
||||
ssim_infrared = calculate_ssim(fusion_gray, matched_ni_gray)
|
||||
ssim_avg = (ssim_visible + ssim_infrared) / 2
|
||||
except Exception as ssim_error:
|
||||
print(f"SSIM计算错误: {ssim_error}")
|
||||
ssim_avg = -1 # 用-1表示计算失败
|
||||
|
||||
# YOLOv8目标检测
|
||||
results = yolo_model(fusion) # 输入融合后的图像
|
||||
annotated_image = results[0].plot() # 绘制检测框
|
||||
|
||||
# 返回带检测结果的图像
|
||||
return 1, annotated_image, dot, en, sf, mi_total, ssim_avg
|
||||
except Exception as e:
|
||||
print(f"Error in fusion/detection: {e}")
|
||||
return 0, None, 0, 0.0, 0.0, 0.0, 0.0
|
||||
|
||||
|
||||
def parse_args():
|
||||
# 输入可见光和红外图像路径
|
||||
visible_image_path = "./test/visible/visibleI0195.jpg" # 可见光图片路径
|
||||
infrared_image_path = "./test/infrared/infraredI0195.jpg" # 红外图片路径
|
||||
# 输入可见光和红外视频路径
|
||||
visible_video_path = "./test/visible.mp4" # 可见光视频路径
|
||||
infrared_video_path = "./test/infrared.mp4" # 红外视频路径
|
||||
|
||||
"""解析命令行参数"""
|
||||
parser = argparse.ArgumentParser(description='图像融合与目标检测')
|
||||
|
||||
parser.add_argument('--mode', type=str, choices=['video', 'image'], default='image',
|
||||
help='输入模式:video(视频流) 或 image(静态图片)')
|
||||
|
||||
# 区分摄像头或视频文件
|
||||
parser.add_argument('--source', type=str, choices=['camera', 'file'],
|
||||
help='视频输入类型:camera(摄像头)或 file(视频文件)')
|
||||
|
||||
# 视频模式参数
|
||||
parser.add_argument('--video1', type=str, default=visible_video_path,
|
||||
help='可见光视频路径(仅在source=file时需要)')
|
||||
parser.add_argument('--video2', type=str, default=infrared_video_path,
|
||||
help='红外视频路径(仅在source=file时需要)')
|
||||
|
||||
# 摄像头模式参数
|
||||
parser.add_argument('--camera_id1', type=int, default=0,
|
||||
help='可见光摄像头ID(仅在source=camera时需要,默认0)')
|
||||
parser.add_argument('--camera_id2', type=int, default=1,
|
||||
help='红外摄像头ID(仅在source=camera时需要,默认1)')
|
||||
parser.add_argument('--output', type=str, default='output.mp4',
|
||||
help='输出视频路径(仅在video模式需要)')
|
||||
|
||||
# 图片模式参数
|
||||
parser.add_argument('--visible', type=str, default=visible_image_path,
|
||||
help='可见光图片路径(仅在image模式需要)')
|
||||
parser.add_argument('--infrared', type=str, default=infrared_image_path,
|
||||
help='红外图片路径(仅在image模式需要)')
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
time_all = 0
|
||||
dots = 0
|
||||
i = 0
|
||||
args = parse_args()
|
||||
|
||||
if args.mode == 'video':
|
||||
if args.source == 'file':
|
||||
# ========== 视频流处理模式 ==========
|
||||
if not args.video1 or not args.video2:
|
||||
raise ValueError("视频模式需要指定 --video1 和 --video2 参数")
|
||||
capture = cv2.VideoCapture(args.video2)
|
||||
capture2 = cv2.VideoCapture(args.video1)
|
||||
elif args.source == 'camera':
|
||||
# ========== 摄像头处理模式 ==========
|
||||
capture = cv2.VideoCapture(args.camera_id1)
|
||||
capture2 = cv2.VideoCapture(args.camera_id2)
|
||||
else:
|
||||
raise ValueError("必须指定 --source 参数(camera 或 file)")
|
||||
|
||||
# 公共视频处理逻辑
|
||||
fps = capture.get(cv2.CAP_PROP_FPS) if args.source == 'file' else 30
|
||||
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
||||
out = cv2.VideoWriter(args.output, fourcc, fps, (640, 480))
|
||||
|
||||
while True:
|
||||
ret1, frame_vi = capture.read() # 可见光帧
|
||||
ret2, frame_ir = capture2.read() # 红外帧
|
||||
if not ret1 or not ret2:
|
||||
break
|
||||
|
||||
# 红外图像转灰度
|
||||
frame_ir_gray = cv2.cvtColor(frame_ir, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# 执行融合与检测
|
||||
flag, fusion, _ = main(frame_vi, frame_ir_gray)
|
||||
|
||||
if flag == 1:
|
||||
cv2.imshow("Fusion with YOLOv8 Detection", fusion)
|
||||
out.write(fusion)
|
||||
|
||||
if cv2.waitKey(1) == ord('q'):
|
||||
break
|
||||
|
||||
# 释放资源
|
||||
capture.release()
|
||||
capture2.release()
|
||||
out.release()
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
elif args.mode == 'image':
|
||||
# ========= 图片处理模式 ==========
|
||||
if not args.infrared or not args.visible:
|
||||
raise ValueError("图片模式需要指定 --visible 和 --infrared 参数")
|
||||
|
||||
# 读取图像
|
||||
img_visible = cv2.imread(args.visible)
|
||||
img_infrared = cv2.imread(args.infrared)
|
||||
|
||||
if img_visible is None or img_infrared is None:
|
||||
print("Error: 图片加载失败,请检查路径!")
|
||||
exit()
|
||||
|
||||
# 转换为灰度图(红外图像处理)
|
||||
img_inf_gray = cv2.cvtColor(img_infrared, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# 执行融合与检测
|
||||
flag, fusion_result, dot, en, sf, mi, ssim_val = main(img_visible, img_inf_gray)
|
||||
|
||||
if flag == 1:
|
||||
# 展示评价指标
|
||||
print("\n======== 融合质量评价 ========")
|
||||
print(f"信息熵(EN): {en:.2f}")
|
||||
print(f"空间频率(SF): {sf:.2f}")
|
||||
print(f"互信息(MI): {mi:.2f}")
|
||||
|
||||
# 条件显示SSIM
|
||||
if ssim_val >= 0:
|
||||
print(f"结构相似性(SSIM): {ssim_val:.4f}")
|
||||
else:
|
||||
print("结构相似性(SSIM): 计算失败(已跳过)")
|
||||
|
||||
print(f"配准点数: {dot}")
|
||||
# 显示并保存结果
|
||||
# cv2.imshow("Fusion with Detection", fusion_result)
|
||||
cv2.imwrite("output/fusion_result.jpg", fusion_result)
|
||||
# cv2.waitKey(0)
|
||||
# cv2.destroyAllWindows()
|
||||
else:
|
||||
print("融合失败!")
|
147
image_fusion/Img_Registration.py
Normal file
@@ -0,0 +1,147 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
# @Time :
|
||||
# @Author :
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
sift = cv2.SIFT_create()
|
||||
|
||||
|
||||
def compuerSift2GetPts(img1, img2):
|
||||
# sift 查找关键点,关键点 And 描述
|
||||
kp1, des1 = sift.detectAndCompute(img1, None)
|
||||
kp2, des2 = sift.detectAndCompute(img2, None)
|
||||
|
||||
matcher = cv2.BFMatcher()
|
||||
raw_matches = matcher.knnMatch(des1, des2, k=2)
|
||||
good_matches = []
|
||||
ratio = 0.75
|
||||
for m1, m2 in raw_matches:
|
||||
# 如果最接近和次接近的比值大于一个既定的值,那么我们保留这个最接近的值,认为它和其匹配的点为good_match
|
||||
if m1.distance < ratio * m2.distance:
|
||||
good_matches.append([m1])
|
||||
matches = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good_matches, None, flags=2)
|
||||
ptsA = np.float32([kp1[m[0].queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
|
||||
ptsB = np.float32([kp2[m[0].trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
|
||||
|
||||
ransacReprojThreshold = 4
|
||||
# 单应性矩阵可以将一张图通过旋转、变换等方式与另一张图对齐
|
||||
# print(len(ptsA), len(ptsB))
|
||||
if len(ptsA) == 0: return ptsA, ptsB, 0
|
||||
H, status = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, ransacReprojThreshold)
|
||||
cv2.imshow("matcher", matches)
|
||||
cv2.waitKey(100)
|
||||
|
||||
return ptsA, ptsB, 1
|
||||
|
||||
|
||||
def findBestDistanceAndPts(ptsA, ptsB):
|
||||
x_dct = {}
|
||||
y_dct = {}
|
||||
best_x, best_y = int(ptsA[0][0][0] - ptsB[0][0][0]), int(ptsA[0][0][1] - ptsB[0][0][1])
|
||||
x_cnt, y_cnt = 0, 0
|
||||
for i in range(len(ptsA)):
|
||||
# print(ptsA[i], ' ', ptsB[i])
|
||||
x_dis = int(ptsA[i][0][0] - ptsB[i][0][0])
|
||||
y_dis = int(ptsA[i][0][1] - ptsB[i][0][1])
|
||||
# print(x_dis)
|
||||
if x_dis in x_dct:
|
||||
x_dct.update({x_dis: int(x_dct.get(x_dis) + 1)})
|
||||
if x_dct.get(x_dis) > x_cnt:
|
||||
best_x = x_dis
|
||||
x_cnt = x_dct.get(x_dis)
|
||||
# print(x_dct.get(x_dis))
|
||||
else:
|
||||
x_dct.update({x_dis: 1})
|
||||
# print(x_dct.get(x_dis))
|
||||
# print(y_dis)
|
||||
if y_dis in y_dct:
|
||||
y_dct.update({y_dis: int(y_dct.get(y_dis) + 1)})
|
||||
if y_dct.get(y_dis) > y_cnt:
|
||||
best_y = y_dis
|
||||
y_cnt = y_dct.get(y_dis)
|
||||
# print(y_dct.get(y_dis))
|
||||
else:
|
||||
y_dct.update({y_dis: 1})
|
||||
# print(y_dct.get(y_dis))
|
||||
print(best_x, best_y)
|
||||
|
||||
pt = []
|
||||
ptb = []
|
||||
for i in range(len(ptsA)):
|
||||
x_dis = int(ptsA[i][0][0] - ptsB[i][0][0])
|
||||
y_dis = int(ptsA[i][0][1] - ptsB[i][0][1])
|
||||
if abs(best_x - x_dis) <= 0:
|
||||
pt.append([ptsA[i][0][0], ptsA[i][0][1]])
|
||||
# print(pt)
|
||||
return pt, best_x, best_y
|
||||
|
||||
|
||||
def minDistanceHasXy(ptsA, ptsB):
|
||||
dct = {}
|
||||
cnt = 0
|
||||
best = 's'
|
||||
for i in range(len(ptsA)):
|
||||
disx = int(ptsA[i][0][0] - ptsB[i][0][0] + 0.5)
|
||||
disy = int(ptsA[i][0][1] - ptsB[i][0][1] + 0.5)
|
||||
s = str(disx) + ',' + str(disy)
|
||||
# print(s)
|
||||
if s in dct:
|
||||
dct.updata({s: int(dct.get(s) + 1)})
|
||||
if dct.get(s) >= cnt:
|
||||
cnt = dct.get(s)
|
||||
best = s
|
||||
print(s)
|
||||
else:
|
||||
dct.update({s: int(1)})
|
||||
for i, j in dct.items():
|
||||
print(i, j)
|
||||
print(best)
|
||||
|
||||
|
||||
def detectImg(img1, img2, pta, best_x, best_y):
|
||||
# print(pta)
|
||||
min_x = int(min(x[0] for x in pta))
|
||||
max_x = int(max(x[0] for x in pta))
|
||||
min_y = int(min(x[1] for x in pta))
|
||||
max_y = int(max(x[1] for x in pta))
|
||||
# print(min_x, max_x)
|
||||
# print(min_x - best_x, max_x - best_x)
|
||||
# print(min_y, max_y)
|
||||
# print(min_y - best_y, max_y - best_y)
|
||||
newimg1 = img1[min_y: max_y, min_x: max_x]
|
||||
newimg2 = img2[min_y - best_y: max_y - best_y, min_x - best_x: max_x - best_x]
|
||||
# cv2.imshow("newimg1", newimg1)
|
||||
# cv2.imshow("newimg2", newimg2)
|
||||
# cv2.waitKey(0)
|
||||
return newimg1, newimg2
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
j = 0
|
||||
for i in range(20, 4771, 1):
|
||||
print(i)
|
||||
path1 = './data/907dat/gray/camera1-' + str(i) + '.png'
|
||||
path2 = './data/907dat/color/camera0-' + str(i) + '.png'
|
||||
img1 = cv2.imread(path1)
|
||||
img2 = cv2.imread(path2)
|
||||
if (img1 is None or img2 is None): continue
|
||||
PtsA, PtsB, f = compuerSift2GetPts(img1, img2)
|
||||
if (f == 0): continue
|
||||
pt, best_x, best_y = findBestDistanceAndPts(PtsA, PtsB)
|
||||
newimg1, newimg2 = detectImg(img1, img2, pt, best_x, best_y)
|
||||
if newimg1.shape[0] < 10 or newimg1.shape[1] < 10: continue
|
||||
print(newimg1.shape, newimg2.shape)
|
||||
# newimg1 = cv2.resize(newimg1, (320, 240))
|
||||
# newimg2 = cv2.resize(newimg2, (320, 240))
|
||||
wirtePath1 = './result/dat_result_2/gray/camera1-' + str(j) + '.png'
|
||||
wirtePath2 = './result/dat_result_2/color/camera0-' + str(j) + '.png'
|
||||
if newimg1.shape[0] > 255 and newimg1.shape[1] > 255 and newimg1.shape == newimg2.shape:
|
||||
# cv2.imwrite(wirtePath1, newimg1)
|
||||
# cv2.imwrite(wirtePath2, newimg2)
|
||||
j += 1
|
||||
cv2.imshow("newimg1", newimg1)
|
||||
cv2.imshow("newimg2", newimg2)
|
||||
cv2.waitKey()
|
||||
print(j)
|
||||
pass
|
0
image_fusion/__init__.py
Normal file
BIN
image_fusion/output/fusion_result.jpg
Normal file
After Width: | Height: | Size: 152 KiB |
BIN
image_fusion/test/infrared.jpg
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
image_fusion/test/visible.jpg
Normal file
After Width: | Height: | Size: 67 KiB |
41
requirements.txt
Normal file
@@ -0,0 +1,41 @@
|
||||
certifi==2025.1.31
|
||||
charset-normalizer==3.4.1
|
||||
colorama==0.4.6
|
||||
contourpy==1.3.2
|
||||
cycler==0.12.1
|
||||
filelock==3.18.0
|
||||
fonttools==4.57.0
|
||||
fsspec==2025.3.2
|
||||
idna==3.10
|
||||
Jinja2==3.1.6
|
||||
kiwisolver==1.4.8
|
||||
MarkupSafe==3.0.2
|
||||
matplotlib==3.10.1
|
||||
mpmath==1.3.0
|
||||
networkx==3.4.2
|
||||
numpy==2.1.1
|
||||
opencv-python==4.11.0.86
|
||||
packaging==24.2
|
||||
pandas==2.2.3
|
||||
pillow==11.2.1
|
||||
psutil==7.0.0
|
||||
py-cpuinfo==9.0.0
|
||||
pyparsing==3.2.3
|
||||
python-dateutil==2.9.0.post0
|
||||
pytz==2025.2
|
||||
PyYAML==6.0.2
|
||||
requests==2.32.3
|
||||
scipy==1.15.2
|
||||
seaborn==0.13.2
|
||||
setuptools==78.1.0
|
||||
six==1.17.0
|
||||
sympy==1.13.1
|
||||
torch==2.6.0+cu124
|
||||
torchaudio==2.6.0+cu124
|
||||
torchvision==0.21.0+cu124
|
||||
tqdm==4.67.1
|
||||
typing_extensions==4.13.2
|
||||
tzdata==2025.2
|
||||
ultralytics==8.3.111
|
||||
ultralytics-thop==2.0.14
|
||||
urllib3==2.4.0
|
6
yolov8/yolov8.yaml
Normal file
@@ -0,0 +1,6 @@
|
||||
train: /mnt/DATA/dataset/uav_dataset/train/images/
|
||||
val: /mnt/DATA/dataset/uav_dataset/val/images/
|
||||
test: /mnt/DATA/dataset/test2/images/
|
||||
# number of classes
|
||||
nc: 1
|
||||
names: ['uav']
|
13
yolov8/yolov8_train.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from ultralytics import YOLO
|
||||
|
||||
# 加载预训练模型
|
||||
model = YOLO('../yolov8n.pt')
|
||||
|
||||
# 开始训练
|
||||
model.train(
|
||||
data='./yolov8.yaml', # 数据配置文件路径
|
||||
epochs=320, # 训练轮数
|
||||
batch=-1, # 批量大小
|
||||
imgsz=640, # 输入图片大小
|
||||
device=0 # 使用的设备(0 表示 GPU,'cpu' 表示 CPU)
|
||||
)
|